41 research outputs found

    The parent?infant dyad and the construction of the subjective self

    Get PDF
    Developmental psychology and psychopathology has in the past been more concerned with the quality of self-representation than with the development of the subjective agency which underpins our experience of feeling, thought and action, a key function of mentalisation. This review begins by contrasting a Cartesian view of pre-wired introspective subjectivity with a constructionist model based on the assumption of an innate contingency detector which orients the infant towards aspects of the social world that react congruently and in a specifically cued informative manner that expresses and facilitates the assimilation of cultural knowledge. Research on the neural mechanisms associated with mentalisation and social influences on its development are reviewed. It is suggested that the infant focuses on the attachment figure as a source of reliable information about the world. The construction of the sense of a subjective self is then an aspect of acquiring knowledge about the world through the caregiver's pedagogical communicative displays which in this context focuses on the child's thoughts and feelings. We argue that a number of possible mechanisms, including complementary activation of attachment and mentalisation, the disruptive effect of maltreatment on parent-child communication, the biobehavioural overlap of cues for learning and cues for attachment, may have a role in ensuring that the quality of relationship with the caregiver influences the development of the child's experience of thoughts and feelings

    Size-and composition optimized sub-nanometer and nm size catalysts for low-temperature jet-fuel activation

    No full text
    Adding catalysts to jet fuels has advantages such as accelerated combustion and increased heat sink capacity. The multitude of parameters determining catalyst performance forms a considerable challenge, such as optimal particle composition and size which primarily determine reaction rates and energetics, plus sintering resistance. Prerequisites for such studies are 1) catalysts with well defined size/composition and 2) characterization of the catalyst at work. In this study, cyclohexane is used as fuel surrogate and its dehydrogenation on Pt- and Co-based catalysts is monitored by temperature programmed reaction combined with in situ X-ray scattering and absorption. The results shows that efficient dehydrogenation of cyclohexane can be performed on subnanometer and nanometer size catalysts, moreover at low temperatures. Catalytic performance can be tuned by varying composition and functionalization of the support material, the size and doping of the nanocatalyst. DFT studies are used to help understand the structures and reaction pathways

    Reaction Mechanism for Direct Propylene Epoxidation by Alumina Supported Silver Aggregates The Role of the Particle Support Interface

    No full text
    Subnanometer Ag aggregates on alumina supports have been found to be active toward direct propylene epoxidation to propylene oxide by molecular oxygen at low temperatures, with a negligible amount of carbon dioxide formation (Science 2010, 328, 224, ). In this work, we computationally and experimentally investigate the origin of the high reactivity of the subnanometer Ag aggregates. Computationally, we study O<sub>2</sub> dissociation and propylene epoxidation on unsupported Ag<sub>19</sub> and Ag<sub>20</sub> clusters, as well as alumina-supported Ag<sub>19</sub>. The O<sub>2</sub> dissociation and propylene epoxidation apparent barriers at the interface between the Ag aggregate and the alumina support are calculated to be 0.2 and 0.2–0.4 eV, respectively. These barriers are somewhat lower than those on sites away from the interface. The mechanism at the interface is similar to what was previously found for the silver trimer on alumina and can account for the high activity observed for the direct oxidation of propylene on the Ag aggregates. The barriers for oxygen dissociation on these model systems both at the interface and on the surfaces are small compared to crystalline surfaces, indicating that availability of oxygen will not be a rate limiting step for the aggregates, as in the case of the crystalline surfaces. Experimentally, we investigate Ultrananocrystalline Diamond (UNCD)-supported silver aggregates under reactive conditions of propylene partial oxidation. The UNCD-supported Ag clusters are found to be not measurably active toward propylene oxidation, in contrast to the alumina supported Ag clusters. This suggests that the lack of metal-oxide interfacial sites of the Ag-UNCD catalyst limits the epoxidation catalytic activity. This combined computational and experimental study shows the importance of the metal-oxide interface as well as the noncrystalline nature of the alumina-supported subnanometer Ag aggregate catalysts for propylene epoxidation
    corecore