210 research outputs found

    Construction of recombinant attenuated Salmonella enterica serovar typhimurium vaccine vector strains for safety in newborn and infant mice

    Get PDF
    Recombinant bacterial vaccines must be safe, efficacious, and well tolerated, especially when administered to newborns and infants to prevent diseases of early childhood. Many means of attenuation have been shown to render vaccine strains susceptible to host defenses or unable to colonize lymphoid tissue effectively, thus decreasing their immunogenicity. We have constructed recombinant attenuated Salmonella vaccine strains that display high levels of attenuation while retaining the ability to induce high levels of immunogenicity and are well tolerated in high doses when administered to infant mice as young as 24 h old. The strains contain three means of regulated delayed attenuation, as well as a constellation of additional mutations that aid in enhancing safety, regulate antigen expression, and reduce disease symptoms commonly associated with Salmonella infection. The vaccine strains are well tolerated when orally administered to infant mice 24 h old at doses as high as 3.5 × 10(8) CFU

    Live Recombinant Salmonella Typhi Vaccines Constructed to Investigate the Role of rpoS in Eliciting Immunity to a Heterologous Antigen

    Get PDF
    We hypothesized that the immunogenicity of live Salmonella enterica serovar Typhi vaccines expressing heterologous antigens depends, at least in part, on its rpoS status. As part of our project to develop a recombinant attenuated S. Typhi vaccine (RASTyV) to prevent pneumococcal diseases in infants and children, we constructed three RASTyV strains synthesizing the Streptococcus pneumoniae surface protein PspA to test this hypothesis. Each vector strain carried ten engineered mutations designed to optimize safety and immunogenicity. Two S. Typhi vector strains (χ9639 and χ9640) were derived from the rpoS mutant strain Ty2 and one (χ9633) from the RpoS+ strain ISP1820. In χ9640, the nonfunctional rpoS gene was replaced with the functional rpoS gene from ISP1820. Plasmid pYA4088, encoding a secreted form of PspA, was moved into the three vector strains. The resulting RASTyV strains were evaluated for safety in vitro and for immunogenicity in mice. All three RASTyV strains were similar to the live attenuated typhoid vaccine Ty21a in their ability to survive in human blood and human monocytes. They were more sensitive to complement and were less able to survive and persist in sewage and surface water than their wild-type counterparts. Adult mice intranasally immunized with any of the RASTyV strains developed immune responses against PspA and Salmonella antigens. The RpoS+ vaccines induced a balanced Th1/Th2 immune response while the RpoS− strain χ9639(pYA4088) induced a strong Th2 immune response. Immunization with any RASTyV provided protection against S. pneumoniae challenge; the RpoS+ strain χ9640(pYA4088) provided significantly greater protection than the ISP1820 derivative, χ9633(pYA4088). In the pre-clinical setting, these strains exhibited a desirable balance between safety and immunogenicity and are currently being evaluated in a Phase 1 clinical trial to determine which of the three RASTyVs has the optimal safety and immunogenicity profile in human hosts

    Improving Salmonella vector with rec mutation to stabilize the DNA cargoes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Salmonella </it>has been employed to deliver therapeutic molecules against cancer and infectious diseases. As the carrier for target gene(s), the cargo plasmid should be stable in the bacterial vector. Plasmid recombination has been reduced in <it>E. coli </it>by mutating several genes including the <it>recA</it>, <it>recE</it>, <it>recF </it>and <it>recJ</it>. However, to our knowledge, there have been no published studies of the effect of these or any other genes that play a role in plasmid recombination in <it>Salmonella enterica</it>.</p> <p>Results</p> <p>The effect of <it>recA</it>, <it>recF </it>and <it>recJ </it>deletions on DNA recombination was examined in three serotypes of <it>Salmonella enterica</it>. We found that (1) intraplasmid recombination between direct duplications was RecF-independent in Typhimurium and Paratyphi A, but could be significantly reduced in Typhi by a Δ<it>recA </it>or Δ<it>recF </it>mutation; (2) in all three <it>Salmonella </it>serotypes, both Δ<it>recA </it>and Δ<it>recF </it>mutations reduced intraplasmid recombination when a 1041 bp intervening sequence was present between the duplications; (3) Δ<it>recA </it>and Δ<it>recF </it>mutations resulted in lower frequencies of interplasmid recombination in Typhimurium and Paratyphi A, but not in Typhi; (4) in some cases, a Δ<it>recJ </it>mutation could reduce plasmid recombination but was less effective than Δ<it>recA </it>and Δ<it>recF </it>mutations. We also examined chromosome-related recombination. The frequencies of intrachromosomal recombination and plasmid integration into the chromosome were 2 and 3 logs lower than plasmid recombination frequencies in Rec<sup>+ </sup>strains. A Δ<it>recA </it>mutation reduced both intrachromosomal recombination and plasmid integration frequencies.</p> <p>Conclusions</p> <p>The Δ<it>recA </it>and Δ<it>recF </it>mutations can reduce plasmid recombination frequencies in <it>Salmonella enterica</it>, but the effect can vary between serovars. This information will be useful for developing <it>Salmonella </it>delivery vectors able to stably maintain plasmid cargoes for vaccine development and gene therapy.</p

    Electron affinities of the first- and second- row atoms: benchmark ab initio and density functional calculations

    Full text link
    A benchmark ab initio and density functional (DFT) study has been carried out on the electron affinities of the first- and second-row atoms. The ab initio study involves basis sets of spdfghspdfgh and spdfghispdfghi quality, extrapolations to the 1-particle basis set limit, and a combination of the CCSD(T), CCSDT, and full CI electron correlation methods. Scalar relativistic and spin-orbit coupling effects were taken into account. On average, the best ab initio results agree to better than 0.001 eV with the most recent experimental results. Correcting for imperfections in the CCSD(T) method improves the mean absolute error by an order of magnitude, while for accurate results on the second-row atoms inclusion of relativistic corrections is essential. The latter are significantly overestimated at the SCF level; for accurate spin-orbit splitting constants of second-row atoms inclusion of (2s,2p) correlation is essential. In the DFT calculations it is found that results for the 1st-row atoms are very sensitive to the exchange functional, while those for second-row atoms are rather more sensitive to the correlation functional. While the LYP correlation functional works best for first-row atoms, its PW91 counterpart appears to be preferable for second-row atoms. Among ``pure DFT'' (nonhybrid) functionals, G96PW91 (Gill 1996 exchange combined with Perdew-Wang 1991 correlation) puts in the best overall performance. The best results overall are obtained with the 1-parameter hybrid modified Perdew-Wang (mPW1) exchange functionals of Adamo and Barone [J. Chem. Phys. {\bf 108}, 664 (1998)], with mPW1LYP yielding the best results for first-row, and mPW1PW91 for second-row atoms. Indications exist that a hybrid of the type aa mPW1LYP + (1a)(1-a) mPW1PW91 yields better results than either of the constituent functionals.Comment: Phys. Rev. A, in press (revised version, review of issues concerning DFT and electron affinities added

    Uniform electron gases

    Full text link
    We show that the traditional concept of the uniform electron gas (UEG) --- a homogeneous system of finite density, consisting of an infinite number of electrons in an infinite volume --- is inadequate to model the UEGs that arise in finite systems. We argue that, in general, a UEG is characterized by at least two parameters, \textit{viz.} the usual one-electron density parameter ρ\rho and a new two-electron parameter η\eta. We outline a systematic strategy to determine a new density functional E(ρ,η)E(\rho,\eta) across the spectrum of possible ρ\rho and η\eta values.Comment: 8 pages, 2 figures, 5 table

    The Aspartate-Semialdehyde Dehydrogenase of Edwardsiella ictaluri and Its Use as Balanced-Lethal System in Fish Vaccinology

    Get PDF
    asdA mutants of Gram-negative bacteria have an obligate requirement for diaminopimelic acid (DAP), which is an essential constituent of the peptidoglycan layer of the cell wall of these organisms. In environments deprived of DAP, i.e., animal tissues, they will undergo lysis. Deletion of the asdA gene has previously been exploited to develop antibiotic-sensitive strains of live attenuated recombinant bacterial vaccines. Introduction of an Asd+ plasmid into a ΔasdA mutant makes the bacterial strain plasmid-dependent. This dependence on the Asd+ plasmid vector creates a balanced-lethal complementation between the bacterial strain and the recombinant plasmid. E. ictaluri is an enteric Gram-negative fish pathogen that causes enteric septicemia in catfish. Because E. ictaluri is a nasal/oral invasive intracellular pathogen, this bacterium is a candidate to develop a bath/oral live recombinant attenuated Edwardsiella vaccine (RAEV) for the catfish aquaculture industry. As a first step to develop an antibiotic-sensitive RAEV strain, we characterized and deleted the E. ictaluri asdA gene. E. ictaluri ΔasdA01 mutants exhibit an absolute requirement for DAP to grow. The asdA gene of E. ictaluri was complemented by the asdA gene from Salmonella. Several Asd+ expression vectors with different origins of replication were transformed into E. ictaluri ΔasdA01. Asd+ vectors were compatible with the pEI1 and pEI2 E. ictaluri native plasmids. The balanced-lethal system was satisfactorily evaluated in vivo. Recombinant GFP, PspA, and LcrV proteins were synthesized by E. ictaluri ΔasdA01 harboring Asd+ plasmids. Here we constructed a balanced-lethal system, which is the first step to develop an antibiotic-sensitive RAEV for the aquaculture industry

    Lrp Acts as Both a Positive and Negative Regulator for Type 1 Fimbriae Production in Salmonella enterica Serovar Typhimurium

    Get PDF
    Leucine-responsive regulatory protein (Lrp) is known to be an indirect activator of type 1 fimbriae synthesis in Salmonella enterica serovar Typhimurium via direct regulation of FimZ, a direct positive regulator for type 1 fimbriae production. Using RT-PCR, we have shown previously that fimA transcription is dramatically impaired in both lrp-deletion (Δlrp) and constitutive-lrp expression (lrpC) mutant strains. In this work, we used chromosomal PfimA-lacZ fusions and yeast agglutination assays to confirm and extend our previous results. Direct binding of Lrp to PfimA was shown by an electrophoretic mobility shift assay (EMSA) and DNA footprinting assay. Site-directed mutagenesis revealed that the Lrp-binding motifs in PfimA play a role in both activation and repression of type 1 fimbriae production. Overproduction of Lrp also abrogates fimZ expression. EMSA data showed that Lrp and FimZ proteins independently bind to PfimA without competitive exclusion. In addition, both Lrp and FimZ binding to PfimA caused a hyper retardation (supershift) of the DNA-protein complex compared to the shift when each protein was present alone. Nutrition-dependent cellular Lrp levels closely correlated with the amount of type 1 fimbriae production. These observations suggest that Lrp plays important roles in type 1 fimbriation by acting as both a positive and negative regulator and its effect depends, at least in part, on the cellular concentration of Lrp in response to the nutritional environment

    Type 1 Fimbriae, a Colonization Factor of Uropathogenic Escherichia coli, Are Controlled by the Metabolic Sensor CRP-cAMP

    Get PDF
    Type 1 fimbriae are a crucial factor for the virulence of uropathogenic Escherichia coli during the first steps of infection by mediating adhesion to epithelial cells. They are also required for the consequent colonization of the tissues and for invasion of the uroepithelium. Here, we studied the role of the specialized signal transduction system CRP-cAMP in the regulation of type 1 fimbriation. Although initially discovered by regulating carbohydrate metabolism, the CRP-cAMP complex controls a major regulatory network in Gram-negative bacteria, including a broad subset of genes spread into different functional categories of the cell. Our results indicate that CRP-cAMP plays a dual role in type 1 fimbriation, affecting both the phase variation process and fimA promoter activity, with an overall repressive outcome on fimbriation. The dissection of the regulatory pathway let us conclude that CRP-cAMP negatively affects FimB-mediated recombination by an indirect mechanism that requires DNA gyrase activity. Moreover, the underlying studies revealed that CRP-cAMP controls the expression of another global regulator in Gram-negative bacteria, the leucine-responsive protein Lrp. CRP-cAMP-mediated repression is limiting the switch from the non-fimbriated to the fimbriated state. Consistently, a drop in the intracellular concentration of cAMP due to altered physiological conditions (e.g. growth in presence of glucose) increases the percentage of fimbriated cells in the bacterial population. We also provide evidence that the repression of type 1 fimbriae by CRP-cAMP occurs during fast growth conditions (logarithmic phase) and is alleviated during slow growth (stationary phase), which is consistent with an involvement of type 1 fimbriae in the adaptation to stress conditions by promoting biofilm growth or entry into host cells. Our work suggests that the metabolic sensor CRP-cAMP plays a role in coupling the expression of type 1 fimbriae to environmental conditions, thereby also affecting subsequent attachment and colonization of host tissues

    Impairment of Melibiose Utilization in \u3ci\u3eStreptococcus mutans\u3c/i\u3e Serotype c \u3ci\u3egtfA \u3c/i\u3eMutants

    Get PDF
    The Streptococcus mutans serotype c gtfA gene encodes a 55-kilodalton sucrose-hydrolyzing enzyme. Analysis of S. mutans gtfA mutants revealed that the mutant strains were specifically impaired in the ability to use melibiose as a sole carbon source. S. mutans gafA mutant strains synthesized less α-galactosidase activity inducible by raffinose than wild-type strains. Melibiose (an inducer in wild-type strains) failed to induce significant levels of a-galactosidase in the mutant strains. We hypothesize that melibiose use by . mutans requires the interaction of the GtfA enzyme, or another gene product under the control of the gtfA promoter, with other gene product(s) involved in melibiose transport or hydrolysis
    corecore