18,492 research outputs found
Recommended from our members
Children as partners with adults in their medical care
Aims: To investigate the seldom published views of children with type 1 diabetes about their condition and ways in which they share in managing their medical and health care with adults.
Methods: Semi-structured, tape recorded interviews, during 2003, with a purposive sample of 24 children aged 3–12 years who have type I diabetes and who attend two inner London hospitals and one hospital in a commuter town.
Results: The children reported high levels of understanding, knowledge, and skill gained from their experience of living with diabetes and constantly having to take account of the condition and their paediatrician’s guidance. Their key goals were to be “normal” and “just get on with their lives”.
Discussion: The interviews showed that children’s experiences of diabetes tended to enable them to make informed, “wise” decisions in their own best interests, even at a young age. They achieved a complicated balance between the sometimes competing goals of social health “being normal” and physiological health in controlling glycaemia. Their competence supports approaches in children’s rights and in policy makers’ aims that people with diabetes—including children—gain more knowledge, skills, and responsibility for their own care in partnership with healthcare professionals. Consent is usually considered in relation to surgery; however the children showed how they constantly dealt with decisions about consent or refusal, compliance with, or resistance to their prescribed treatment. Their health depends on their informed commitment to medical guidance; more research is needed about the daily realities of children’s committed and responsible co-management of their chronic illness
Is it possible to identify a trend in problem/failure data
One of the major obstacles in identifying and interpreting a trend is the small number of data points. Future trending reports will begin with 1983 data. As the problem/failure data are aggregated by year, there are just seven observations (1983 to 1989) for the 1990 reports. Any statistical inferences with a small amount of data will have a large degree of uncertainty. Consequently, a regression technique approach to identify a trend is limited. Though trend determination by failure mode may be unrealistic, the data may be explored for consistency or stability and the failure rate investigated. Various alternative data analysis procedures are briefly discussed. Techniques that could be used to explore problem/failure data by failure mode are addressed. The data used are taken from Section One, Space Shuttle Main Engine, of the Calspan Quarterly Report dated April 2, 1990
Methods for trend analysis: Examples with problem/failure data
Statistics are emphasized as an important role in quality control and reliability. Consequently, Trend Analysis Techniques recommended a variety of statistical methodologies that could be applied to time series data. The major goal of the working handbook, using data from the MSFC Problem Assessment System, is to illustrate some of the techniques in the NASA standard, some different techniques, and to notice patterns of data. Techniques for trend estimation used are: regression (exponential, power, reciprocal, straight line) and Kendall's rank correlation coefficient. The important details of a statistical strategy for estimating a trend component are covered in the examples. However, careful analysis and interpretation is necessary because of small samples and frequent zero problem reports in a given time period. Further investigations to deal with these issues are being conducted
Spatiotemporal Model for Kerr Comb Generation in Whispering Gallery Mode Resonators
We establish an exact partial differential equation to model Kerr comb
generation in whispering-gallery mode resonators. This equation is a variant of
the Lugiato-Lefever equation that includes higher-order dispersion and
nonlinearity. This spatio-temporal model, whose main variable is the total
intracavity field, is significantly more suitable than the modal expansion
approach for the theoretical understanding and the numerical simulation of
wide-span combs. It allows us to explore pulse formation in which a large
number of modes interact cooperatively. This versatile approach can be
straightforwardly extended to include higher-order dispersion, as well as other
phenomena like Raman, Brillouin and Rayleigh scattering. We demonstrate for the
first time that when the dispersion is anomalous, Kerr comb generation can
arise as the spectral signature of dissipative cavity solitons, leading to
wide-span combs with low pumping.Comment: 5 pages, 2 figure
Operational performance of a low cost, air mass 2 solar simulator
Modifications and improvements on a low cost air mass 2 solar simulator are discussed. The performance characteristics of total irradiance, uniformity of irradiance, spectral distribution, and beam subtense angle are presented. The simulator consists of an array of tungsten halogen lamps hexagonally spaced in a plane. A corresponding array of plastic Fresnel lenses shapes the output beam such that the simulator irradiates a 1.2 m by 1.2 m area with uniform collimated irradiance. Details are given concerning individual lamp output measurements and placement of the lamps. Originally, only the direct component of solar irradiance was simulated. Since the diffuse component may affect the performance of some collectors, the capability to simulate it is being added. An approach to this diffuse addition is discussed
Performance of Hughes GaAs concentrator cells under 1-MeV electron irradiation
Several Hughes gallium arsenide (GaAs) concentrator cells were exposed to 1-MeV electrons at fluences up to 1x10 to the 15th power electrons/sq cm. Performance data were taken after several fluences, at two temperatures, and at concentration levels from 1 to approx. 150x AMO. Data at 1 sun and 25 deg C were taken with an X-25 xenon-lamp solar simulator. Data at concentration were taken using a pulsed solar simulator with the assumption of a linear relationship between short-circuit current and irradiance. The cells are 5 by 5 mm with a 4-mm diameter illuminated area
A low cost ""Air Mass 2'' solar simulator
Tungsten halogen projection lamps have integral ellipsoidal reflector, and hexagonal shaped plastic Fresnel lenses. Reflector is dichroic coated to reduce infrared content of reflected radiation. Array of lamps and lenses produces uniform collimated beam having near AM2 spectrum and intensity that can be used for testing flat plate solar collectors
Performance of GaAs and silicon concentrator cells under 37 MeV proton irradiation
Gallium arsenide concentrator cells from three sources and silicon concentrator cells from one source were exposed to 37 MeV protons at fluences up to 2.8 x 10 to the 12th protons/sq cm. Performance data were taken after several fluences, at two temperatures (25 and 80 C), and at concentration levels from 1 to about 150 x AMO. Data at one sun and 25 C were taken with an X-25 xenon lamp solar simulator. Data at concentration were taken using a pulsed solar simulator with the assumption of a linear relationship between short circuit current and irradiance. The cells are 5 x 5 mm with a 4-mm diameter illuminated area
A parallel-plate flow chamber to study initial cell adhesion on a nanofeatured surface
Cells in the human body come across many types of information, which they respond to. Both material chemistry and topography of the surface where they adhere have an effect on cell shape, proliferation, migration, and gene expression. It is possible to create surfaces with topography at the nanometric scale to allow observation of cell-topography interactions. Previous work has shown that 100-nm-diameter pits on a 300-nm pitch can have a marked effect in reducing the adhesion of rat fibroblasts in static cultures. In the present study, a flow of cell suspension was used to investigate cell adhesion onto nanopits in dynamic conditions, by means of a parallel-plate flow chamber. A flow chamber with inner nanotopography has been designed, which allows real-time observation of the flow over the nanopits. A nanopitted pattern was successfully embossed into polymethylmethacrylate to meet the required shape of the chamber. Dynamic cell adhesion after 1 h has been quantified and compared on flat and nanopitted polymethylmethacrylate substrates. The nanopits were seen to be significantly less adhesive than the flat substrates (p<0.001), which is coherent with previous observations of static cultures
- …