2,593 research outputs found
Weighted-density approximation for general nonuniform fluid mixtures
In order to construct a general density-functional theory for nonuniform
fluid mixtures, we propose an extension to multicomponent systems of the
weighted-density approximation (WDA) of Curtin and Ashcroft [Phys. Rev. A 32,
2909 (1985)]. This extension corrects a deficiency in a similar extension
proposed earlier by Denton and Ashcroft [Phys. Rev. A 42, 7312 (1990)], in that
that functional cannot be applied to the multi-component nonuniform fluid
systems with spatially varying composition, such as solid-fluid interfaces. As
a test of the accuracy of our new functional, we apply it to the calculation of
the freezing phase diagram of a binary hard-sphere fluid, and compare the
results to simulation and the Denton-Ashcroft extension.Comment: 4 pages, 4 figures, to appear in Phys. Rev. E as Brief Repor
Modelling Heat Transfer of Carbon Nanotubes
Modelling heat transfer of carbon nanotubes is important for the thermal
management of nanotube-based composites and nanoelectronic device. By using a
finite element method for three-dimensional anisotropic heat transfer, we have
simulated the heat conduction and temperature variations of a single nanotube,
a nanotube array and a part of nanotube-based composite surface with heat
generation. The thermal conductivity used is obtained from the upscaled value
from the molecular simulations or experiments. Simulations show that nanotube
arrays have unique cooling characteristics due to its anisotropic thermal
conductivity.Comment: 10 pages, 4 figure
Potentiation of anti-cancer agent cytotoxicity by the potent poly(ADP-ribose) polymerase inhibitors NU1025 and NU1064.
The ability of the potent poly(ADP-ribose) polymerase (PARP) inhibitor, NU1025 (8-hydroxy-2-methyl-quinazolin-4-[3H]one) to potentiate the cytotoxicity of a panel of mechanistically diverse anti-cancer agents was evaluated in L1210 cells. NU1025 enhanced the cytotoxicity of the DNA-methylating agent MTIC, gamma-irradiation and bleomycin 3.5-, 1.4- and 2-fold respectively. The cytotoxicities of the thymidylate synthase inhibitor, nolatrexed, and the cytotoxic nucleoside, gemcitabine, were not increased. Potentiation of MTIC cytotoxicity by a delayed exposure to NU1025 was equally effective as by a simultaneous exposure to NU1025, indicating that the effects of NU1025 were mediated by an inhibition of the cellular recovery. The recovery from potentially lethal gamma-irradiation damage cytotoxicity in plateau-phase cells was also inhibited by NU1025. Investigation of DNA strand breakage and repair in gamma-irradiated cells by alkaline elution demonstrated that NU1025 caused a marked retardation of DNA repair. A structurally different PARP inhibitor, NU1064 (2-methylbenzimidazole-4-carboxamide), also potentiated the cytotoxicity of MTIC, to a similar extent to NU1025. NU1064 potentiated a sublethal concentration of a DNA methylating agent in a concentration-dependent manner. Collectively, these data suggest that the most suitable cytotoxic agents for use in combination with PARP inhibitors are methylating agents, bleomycin and ionizing radiation, but not anti-metabolites
Bursts in a fiber bundle model with continuous damage
We study the constitutive behaviour, the damage process, and the properties
of bursts in the continuous damage fiber bundle model introduced recently.
Depending on its two parameters, the model provides various types of
constitutive behaviours including also macroscopic plasticity. Analytic results
are obtained to characterize the damage process along the plastic plateau under
strain controlled loading, furthermore, for stress controlled experiments we
develop a simulation technique and explore numerically the distribution of
bursts of fiber breaks assuming infinite range of interaction. Simulations
revealed that under certain conditions power law distribution of bursts arises
with an exponent significantly different from the mean field exponent 5/2. A
phase diagram of the model characterizing the possible burst distributions is
constructed.Comment: 9 pages, 11 figures, APS style, submitted for publicatio
Metabolic rate measurement system, part 1 Final report, Apr. 1968 - Nov. 1969
Metabolic rate measurement of carbon dioxide, oxygen, and total ventilatio
Crystal structures and freezing of dipolar fluids
We investigate the crystal structure of classical systems of spherical
particles with an embedded point dipole at T=0. The ferroelectric ground state
energy is calculated using generalizations of the Ewald summation technique.
Due to the reduced symmetry compared to the nonpolar case the crystals are
never strictly cubic. For the Stockmayer (i.e., Lennard-Jones plus dipolar)
interaction three phases are found upon increasing the dipole moment:
hexagonal, body-centered orthorhombic, and body-centered tetragonal. An even
richer phase diagram arises for dipolar soft spheres with a purely repulsive
inverse power law potential . A crossover between qualitatively
different sequences of phases occurs near the exponent . The results are
applicable to electro- and magnetorheological fluids. In addition to the exact
ground state analysis we study freezing of the Stockmayer fluid by
density-functional theory.Comment: submitted to Phys. Rev.
Lattice density-functional theory of surface melting: the effect of a square-gradient correction
I use the method of classical density-functional theory in the
weighted-density approximation of Tarazona to investigate the phase diagram and
the interface structure of a two-dimensional lattice-gas model with three
phases -- vapour, liquid, and triangular solid. While a straightforward
mean-field treatment of the interparticle attraction is unable to give a stable
liquid phase, the correct phase diagram is obtained when including a suitably
chosen square-gradient term in the system grand potential. Taken this theory
for granted, I further examine the structure of the solid-vapour interface as
the triple point is approached from low temperature. Surprisingly, a novel
phase (rather than the liquid) is found to grow at the interface, exhibiting an
unusually long modulation along the interface normal. The conventional
surface-melting behaviour is recovered only by artificially restricting the
symmetries being available to the density field.Comment: 16 pages, 6 figure
Time dependence of breakdown in a global fiber-bundle model with continuous damage
A time-dependent global fiber-bundle model of fracture with continuous damage
is formulated in terms of a set of coupled non-linear differential equations. A
first integral of this set is analytically obtained. The time evolution of the
system is studied by applying a discrete probabilistic method. Several results
are discussed emphasizing their differences with the standard time-dependent
model. The results obtained show that with this simple model a variety of
experimental observations can be qualitatively reproduced.Comment: APS style, two columns, 4 figures. To appear in Phys. Rev.
Direct calculation of the hard-sphere crystal/melt interfacial free energy
We present a direct calculation by molecular-dynamics computer simulation of
the crystal/melt interfacial free energy, , for a system of hard
spheres of diameter . The calculation is performed by thermodynamic
integration along a reversible path defined by cleaving, using specially
constructed movable hard-sphere walls, separate bulk crystal and fluid systems,
which are then merged to form an interface. We find the interfacial free energy
to be slightly anisotropic with = 0.62, 0.64 and
0.58 for the (100), (110) and (111) fcc crystal/fluid
interfaces, respectively. These values are consistent with earlier density
functional calculations and recent experiments measuring the crystal nucleation
rates from colloidal fluids of polystyrene spheres that have been interpreted
[Marr and Gast, Langmuir {\bf 10}, 1348 (1994)] to give an estimate of
for the hard-sphere system of , slightly lower
than the directly determined value reported here.Comment: 4 pages, 4 figures, submitted to Physical Review Letter
- …