53 research outputs found

    New Coordinates for the Amplitude Parameter Space of Continuous Gravitational Waves

    Get PDF
    The parameter space for continuous gravitational waves (GWs) can be divided into amplitude parameters (signal amplitude, inclination and polarization angles describing the orientation of the source, and an initial phase) and phase-evolution parameters. The division is useful in part because the Jaranowski-Krolak-Schutz (JKS) coordinates on the four-dimensional amplitude parameter space allow the GW signal to be written as a linear combination of four template waveforms with the JKS coordinates as coefficients. We define a new set of coordinates on the amplitude parameter space, with the same properties, which is more closely connected to the physical amplitude parameters. These naturally divide into two pairs of Cartesian-like coordinates on two-dimensional subspaces, one corresponding to left- and the other to right-circular polarization. We thus refer to these as CPF (circular polarization factored) coordinates. The corresponding two sets of polar coordinates (known as CPF-polar) can be related in a simple way to the physical parameters. We illustrate some simplifying applications for these various coordinate systems, such as: a calculation of Jacobians between various coordinate systems; an illustration of the signal coordinate singularities associated with left- and right-circular polarization, which correspond to the origins of the two two-dimensional subspaces; and an elucidation of the form of the log-likelihood ratio between hypotheses of Gaussian noise with and without a continuous GW signal. These are used to illustrate some of the prospects for approximate evaluation of a Bayesian detection statistic defined by marginalization over the physical parameter space. Additionally, in the presence of simplifying assumptions about the observing geometry, we are able to explicitly evaluate the integral for the Bayesian detection statistic, and compare it to the approximate results.Comment: REVTeX, 18 pages, 8 image files included in 7 figure

    Improved Stack-Slide Searches for Gravitational-Wave Pulsars

    Full text link
    We formulate and optimize a computational search strategy for detecting gravitational waves from isolated, previously-unknown neutron stars (that is, neutron stars with unknown sky positions, spin frequencies, and spin-down parameters). It is well known that fully coherent searches over the relevant parameter-space volumes are not computationally feasible, and so more computationally efficient methods are called for. The first step in this direction was taken by Brady & Creighton (2000), who proposed and optimized a two-stage, stack-slide search algorithm. We generalize and otherwise improve upon the Brady-Creighton scheme in several ways. Like Brady & Creighton, we consider a stack-slide scheme, but here with an arbitrary number of semi-coherent stages and with a coherent follow-up stage at the end. We find that searches with three semi-coherent stages are significantly more efficient than two-stage searches (requiring about 2-5 times less computational power for the same sensitivity) and are only slightly less efficient than searches with four or more stages. We calculate the signal-to-noise ratio required for detection, as a function of computing power and neutron star spin-down-age, using our optimized searches.Comment: 19 pages, 7 figures, RevTeX

    Reducing the weak lensing noise for the gravitational wave Hubble diagram using the non-Gaussianity of the magnification distribution

    Get PDF
    Gravitational wave sources are a promising cosmological standard candle because their intrinsic luminosities are determined by fundamental physics (and are insensitive to dust extinction). They are, however, affected by weak lensing magnification due to the gravitational lensing from structures along the line of sight. This lensing is a source of uncertainty in the distance determination, even in the limit of perfect standard candle measurements. It is commonly believed that the uncertainty in the distance to an ensemble of gravitational wave sources is limited by the standard deviation of the lensing magnification distribution divided by the square root of the number of sources. Here we show that by exploiting the non-Gaussian nature of the lensing magnification distribution, we can improve this distance determination, typically by a factor of 2--3; we provide a fitting formula for the effective distance accuracy as a function of redshift for sources where the lensing noise dominates.Comment: matches PRD accepted version (expanded description of the cosmological parameter space + minor changes

    Counting and confusion: Bayesian rate estimation with multiple populations

    Get PDF
    We show how to obtain a Bayesian estimate of the rates or numbers of signal and background events from a set of events when the shapes of the signal and background distributions are known, can be estimated, or approximated; our method works well even if the foreground and background event distributions overlap significantly and the nature of any individual event cannot be determined with any certainty. We give examples of determining the rates of gravitational-wave events in the presence of background triggers from a template bank when noise parameters are known and/or can be fit from the trigger data. We also give an example of determining globular-cluster shape, location, and density from an observation of a stellar field that contains a nonuniform background density of stars superimposed on the cluster stars

    LISA, binary stars, and the mass of the graviton

    Get PDF
    We extend and improve earlier estimates of the ability of the proposed LISA (Laser Interferometer Space Antenna) gravitational wave detector to place upper bounds on the graviton mass, m_g, by comparing the arrival times of gravitational and electromagnetic signals from binary star systems. We show that the best possible limit on m_g obtainable this way is ~ 50 times better than the current limit set by Solar System measurements. Among currently known, well-understood binaries, 4U1820-30 is the best for this purpose; LISA observations of 4U1820-30 should yield a limit ~ 3-4 times better than the present Solar System bound. AM CVn-type binaries offer the prospect of improving the limit by a factor of 10, if such systems can be better understood by the time of the LISA mission. We briefly discuss the likelihood that radio and optical searches during the next decade will yield binaries that more closely approach the best possible case.Comment: ReVTeX 4, 6 pages, 1 figure, submitted to Phys Rev

    Probing Stellar Dynamics in Galactic Nuclei

    Full text link
    Electromagnetic observations over the last 15 years have yielded a growing appreciation for the importance of supermassive black holes (SMBH) to the evolution of galaxies, and for the intricacies of dynamical interactions in our own Galactic center. Here we show that future low-frequency gravitational wave observations, alone or in combination with electromagnetic data, will open up unique windows to these processes. In particular, gravitational wave detections in the 10^{-5}-10^{-1} Hz range will yield SMBH masses and spins to unprecedented precision and will provide clues to the properties of the otherwise undetectable stellar remnants expected to populate the centers of galaxies. Such observations are therefore keys to understanding the interplay between SMBHs and their environments.Comment: 8 pages, Science white paper for the Astro2010 Decadal Surve

    Robust numerical computation of the 3D scalar potential field of the cubic Galileon gravity model at solar system scales

    Get PDF
    Direct detection of dark energy or modified gravity may finally be within reach due to ultrasensitive instrumentation such as atom interferometry capable of detecting incredibly small scale accelerations. Forecasts, constraints and measurement bounds can now too perhaps be estimated from accurate numerical simulations of the fifth force and its Laplacian field at solar system scales. The cubic Galileon gravity scalar field model (CGG), which derives from the DGP braneworld model, describes modified gravity incorporating a Vainshtein screening mechanism. The nonlinear derivative interactions in the CGG equation suppress the field near regions of high density, thereby restoring general relativity (GR) while far from such regions, field enhancement is comparable to GR and the equation is dominated by a linear term. This feature of the governing PDE poses some numerical challenges for computation of the scalar potential, force and Laplacian fields even under stationary conditions. Here we present a numerical method based on finite differences for solution of the static CGG scalar field for a 2D axisymmetric Sun-Earth system and a 3D Cartesian Sun-Earth-Moon system. The method relies on gradient descent of an integrated residual based on the normal attractive branch of the CGG equation. The algorithm is shown to be stable, accurate and rapidly convergent toward the global minimum state. We hope this numerical study, which can easily be extended to include smaller bodies such as detection satellites, will prove useful to future measurement of modified gravity force fields at solar system scales
    • …
    corecore