180 research outputs found

    The behavioral physiology of labroid fishes

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1992The family Labridae, or wrasses, is one of the most speciose fish families and is exceptional in its wide range of morphological and behavioral diversities. The cunner Tautogolabrus adspersus is one of two temperate-dwelling Western North Atlantic representatives of this family, and they are one of the few fishes that remain in New England waters throughout the year. In the winter, the cunner enters a state of "torpor" which has previously been described based solely on behavioral observations. The present study showed that cunner undergo physiological torpor, or hibernation, based on low oxygen consumption rates in winter, contributing to a large Q10 value of 8.5. It is thus established as one of the few marine species that is known to hibernate. Cunner withstood four months of starvation at 4°C. Glycogen, lipid, and protein in the liver decreased during this period, as did the liver/body ratio, but these components did not decrease significantly in the whole-body samples. Since liver components were not exhausted, and body components were not significantly affected, cunner can withstand long periods without eating. Regression analysis predicts that they can live at least 6 months given the rate of decrease of glycogen and lipid reserves, and 9 months based on their protein reserves. Oxygen consumption rates were monitored continuously over several days to determine diel variations in metabolic rate. The values obtained at night were significantly lower than the daytime values. Cunner did not maintain a diel cycle throughout the year; the length of this cycle varied from approximately 24 hours during warm temperatures to approximately 48 hours at temperatures generally below 8°C. Metabolic rates were more variable at warmer temperatures, which is in agreement with the expected increase in spontaneous activity. Two tropicallabroids, the wrasse Thalassoma bifasciatwn and the parrotfish Scarus iserti, also had significantly higher oxygen consumption rates during the day than at night. Both hibernation and sleep are thought to be energy conserving mechanisms in fishes. The ability of labrids to sleep may have predisposed them to becoming established in temperate waters by surviving cold temperatures through hibernation.Funding for this research came from the Ocean Ventures Fund (OVF), and from private funding from the Mobil Co. administered by the Coastal Research Center (CRC) at WHO!. This research was also partially the result of research sponsored by NOAA National Sea Grant College Program Office, Dept. of Commerce, under Grant No. NA86- AA-D-SG090, WHOI Sea Grant Project Nos. R/A-26-PD and R/B-106-PD

    The effect of exogenous glucose infusion on early embryonic development in lactating dairy cows

    Get PDF
    peer-reviewedThe objective of this study was to examine the effect of intravenous infusion of glucose on early embryonic development in lactating dairy cows. Nonpregnant, lactating dairy cows (n = 12) were enrolled in the study (276 ± 17 d in milk). On d 7 after a synchronized estrus, cows were randomly assigned to receive an intravenous infusion of either 750 g/d of exogenous glucose (GLUC; 78 mL/h of 40% glucose wt/vol) or saline (CTRL; 78 mL/h of 0.9% saline solution). The infusion period lasted 7 d and cows were confined to metabolism stalls for the duration of the study. Coincident with the commencement of the infusion on d 7 after estrus, 15 in vitro-produced grade 1 blastocysts were transferred into the uterine horn ipsilateral to the corpus luteum. All animals were slaughtered on d 14 to recover conceptuses, uterine fluid, and endometrial tissue. Glucose infusion increased circulating glucose concentrations (4.70 ± 0.12 vs. 4.15 ± 0.12 mmol/L) but did not affect milk production or dry matter intake. Circulating ÎČ-hydroxybutyrate concentrations were decreased (0.51 ± 0.01 vs. 0.70 ± 0.01 mmol/L for GLUC vs. CTRL, respectively) but plasma fatty acids, progesterone, and insulin concentrations were unaffected by treatment. Treatment did not affect either uterine lumen fluid glucose concentration or the mRNA abundance of specific glucose transporters in the endometrium. Mean conceptus length, width, and area on d 14 were reduced in the GLUC treatment compared with the CTRL treatment. A greater proportion of embryos in the CTRL group had elongated to all length cut-off measurements between 11 and 20 mm (measured in 1-mm increments) compared with the GLUC treatment. In conclusion, infusion of glucose into lactating dairy cows from d 7 to d 14 post-estrus during the critical period of conceptus elongation had an adverse impact on early embryonic development

    First observed wild birth and acoustic record of a possible infanticide attempt on a common bottlenose dolphin (Tursiops truncatus)

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Society for Marine Mammalogy for personal use, not for redistribution. The definitive version was published in Marine Mammal Science 32 (2016): 376–385, doi:10.1111/mms.12248.We observed the birth of a common bottlenose dolphin (Tursiops truncatus) followed immediately by a possible infanticide attempt in the estuary near Savannah, Georgia. Our report is unique in several ways: first, we witnessed the birth of the calf; second, we observed infanticidal behavior almost immediately afterward; and third, we obtained acoustic recordings concurrent with the possible infanticidal behavior. Our observations provide insight into aggressive, possible infanticidal, behavior in bottlenose dolphins.Boat time and support was provided by Department of Education/Title VII Award P382G090003. Additional support was provided by EDGE (Enhancing Diversity in Geosciences Education through Costal Research in Port City) NSF award GEO-0194680.2016-07-1

    Launch Pad Coatings for Smart Corrosion Control

    Get PDF
    Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability. Researchers at NASA's Corrosion Technology Laboratory at KSC are developing a smart, environmentally friendly coating system for early corrosion detection, inhibition, and self healing of mechanical damage without external intervention. This smart coating will detect and respond actively to corrosion and mechanical damage such as abrasion and scratches, in a functional and predictable manner, and will be capable of adapting its properties dynamically. This coating is being developed using corrosion sensitive microcapsules that deliver the contents of their core (corrosion inhibiting compounds, corrosion indicators, and self healing agents) on demand when corrosion or mechanical damage to the coating occurs

    Nurses\u27 Alumnae Association Bulletin, June 1964

    Get PDF
    President\u27s Message Officers and Committee Chairmen Financial Report Hospital and School of Nursing Report Student Activities Jefferson Expansion Program Resume of Alumnae Meetings Staff Nurses Private Duty Social Committee Reports Program Scholarship Bulletin Committee Report Annual Luncheon Notes Membership and Dues Units in Jefferson Expansion Program Center Annual Giving Drive 1963 Report of Ways and Means Committee Jefferson Building Fund Contributions Annual Giving Contributions 1964 Jefferson Building Fund Report Help the Building Fund Committee! Vital Statistics Class News Notice

    Weeds in Cover Crops: Context and Management Considerations

    Get PDF
    Cover crops are increasingly being adopted to provide multiple ecosystem services such as improving soil health, managing nutrients, and decreasing soil erosion. It is not uncommon for weeds to emerge in and become a part of a cover crop plant community. Since the role of cover cropping is to supplement ecosystem service provisioning, we were interested in assessing the impacts of weeds on such provisioning. To our knowledge, no research has examined how weeds in cover crops may impact the provision of ecosystem services and disservices. Here, we review services and disservices associated with weeds in annual agroecosystems and present two case studies from the United States to illustrate how weeds growing in fall-planted cover crops can provide ground cover, decrease potential soil losses, and effectively manage nitrogen. We argue that in certain circumstances, weeds in cover crops can enhance ecosystem service provisioning. In other circumstances, such as in the case of herbicide-resistant weeds, cover crops should be managed to limit weed biomass and fecundity. Based on our case studies and review of the current literature, we conclude that the extent to which weeds should be allowed to grow in a cover crop is largely context-dependent.This work was supported by the USDA National Institute of Food and Agriculture, Organic Research and Extension Initiative under Project PENW-2015-07433 (Grant No. 2015-51300-24156, Accession No. 1007156) and the National Science Foundation (Grant No. DGE1255832)

    Refractory Materials for Flame Deflector Protection System Corrosion Control: Refractory Ceramics Literature Survey

    Get PDF
    Ceramics can be defmed as a material consisting of hard brittle properties produced from inorganic and nonmetallic minerals made by firing at high temperatures. These materials are compounds between metallic and nonmetallic elements and are either totally ionic, or predominately ionic but having some covalent character. This definition allows for a large range of materials, not all applicable to refractory applications. As this report is focused on potential ceramic materials for high temperature, aggressive exposure applications, the ceramics reviewed as part of this report will focus on refractory ceramics specifically designed and used for these applications. Ceramic materials consist of a wide variety of products. Callister (2000) 1 characterized ceramic materials into six classifications: glasses, clay products, refractories, cements, abrasives, and advanced ceramics. Figure 1 shows this classification system. This review will focus mainly on refractory ceramics and cements as in general, the other classifications are neither applicable nor economical for use in large structures such as the flame trench. Although much work has been done in advanced ceramics over the past decade or so, these materials are likely cost prohibitive and would have to be fabricated off-site, transported to the NASA facilities, and installed, which make these even less feasible. Although the authors reviewed the literature on advanced ceramic refractories 2 center dot 3 center dot 4 center dot 5 center dot 6 center dot 7 center dot 8 center dot 9 center dot 10 center dot 11 center dot 12 after the review it was concluded that these materials should not be ' the focus of this report. A review is in progress on materials and systems for prefabricated refractory ceramic panels, but this review is focusing more on typical refractory materials for prefabricated systems, which could make the system more economically feasible. Refractory ceramics are used for a wide variety of applications. Figure 2 shows many ofthese applications, their life expectancy or requirement, and the exposure temperature for the refractory ceramic. Note that the exposure temperatures for refractory ceramics are very similar to the exposure conditions for specialty ceramics (rocket nozzles, space vehicle re-entry fields, etc.) and yet the life expectancy or requirement is relatively low. Currently NASA is repairing the refractory lining in the flame trench after every launch - although this is not a direct indication of low life expectancy, it does indicate that the current system may not be sufficiently durable to maximize economy. Better performing refractory ceramics are needed to improve the performance, economy, and safety during and after launches at the flame trenches at Kennedy Space Center (KSC). To achieve this goal a current study is underway to assess different refractory systems for possible use in the flame trenches at KSC. This report will target the potential applicability of refractory ceramics for use in the flame trenches. An overview of the different refractory ceramics will be provided (see Figure I). This will be followed with a brief description of the structure of refractory products, the properties and characteristics of different systems, the methodology for selecting refractories, and then a general design methodology. Based on these sections, future challenges and opportunities will be identified with the objective of improving the durability, performance, economy, and safety of the launch complex. Refractory ceramics are used for a wide variety of applications. Figure 2 shows many ofthese applications, their life expectancy or requirement, and the exposure temperature for the refractory ceramic. Note that the exposure temperatures for refractory ceramics are very similar to the exposure conditions for specialty ceramics (rocket nozzles, space vehicle re-entry fields, etc.) and yet the life expectancy or requirement is relatively low. Currently NASA is repairing the refractory lining in the flame trench after every launch - although this is not a direct indication of low life expectancy, it does indicate that the current system may not be sufficiently durable to maximize economy. Better performing refractory ceramics are needed to improve the performance, economy, and safety during and after launches at the flame trenches at Kennedy Space Center (KSC). To achieve this goal a current study is underway to assess different refractory systems for possible use in the flame trenches at KSC. This report will target the potential applicability of refractory ceramics for use in the flame trenches. An overview of the different refractory ceramics will be provided (see Figure I). This will be followed with a brief description of the structure of refractory products, the properties and characteristics of different systems, the methodology for selecting refractories, and then a general design methodology. Based on these sections, future challenges and opportunities will be identified with the objective of improving the durability, performance, economy, and safety of the launch complex

    Refractory Materials for Flame Deflector Protection System Corrosion Control: Similar Industries and/or Launch Facilities Survey

    Get PDF
    A trade study and litera ture survey of refractory materials (fi rebrick. refractory concrete. and si licone and epoxy ablatives) were conducted to identify candidate replacement materials for Launch Complexes 39A and 398 at Kennedy Space Center (KSC). In addition, site vis its and in terviews with industry expens and vendors of refractory materials were conducted. As a result of the si te visits and interviews, several products were identified for launch applications. Firebrick is costly to procure and install and was not used in the si tes studied. Refractory concrete is gunnable. adheres well. and costs less 10 install. Martyte. a ceramic fi lled epoxy. can protect structural stccl but is costly. difficullto apply. and incompatible with silicone ablatives. Havanex, a phenolic ablative material, is easy to apply but is costly and requires frequent replacement. Silicone ablatives are ineJ[pensive, easy to apply. and perl'onn well outside of direct rocket impingement areas. but refractory concrete and epoxy ablatives provide better protection against direcl rocket exhaust. None of the prodUCIS in this trade study can be considered a panacea for these KSC launch complexes. but the refractory products. individually or in combination, may be considered for use provided the appropriate testing requirements and specifications are met

    The genetic basis of the comorbidity between cannabis use and major depression

    Get PDF
    Background and aims—While the prevalence of major depression is elevated amongst cannabis users, the role of genetics in this pattern of comorbidity is not clear. This study aimed to estimate the heritability of cannabis use and major depression, quantify the genetic overlap between these two traits, and localize regions of the genome that segregate in families with cannabis use and major depression. Design—Family-based univariate and bivariate genetic analysis. Setting—San Antonio, Texas, USA Participants—Genetics of Brain Structure and Function study (GOBS) participants: 1,284 Mexican-Americans from 75 large multi-generation families and an additional 57 genetically unrelated spouses. Measurements—Phenotypes of lifetime history of cannabis use and major depression, measured using the semi-structured MINI-Plus interview. Genotypes measured using ~1M single nucleotide polymorphisms (SNPs) on Illumina BeadChips. A sub-selection of these SNPs were used to build multipoint identity-by-descent matrices for linkage analysis. Findings—Both cannabis use (h2=0.614, p=1.00×10−6, SE=0.151) and major depression (h2=0.349, p=1.06×10−5, SE=0.100) are heritable traits, and there is significant genetic correlation between the two (ρg=0.424, p=0.0364, SE=0.195). Genome-wide linkage scans identify a significant univariate linkage peak for major depression on chromosome 22 (LOD=3.144 at 2cM), with a suggestive peak for cannabis use on chromosome 21 (LOD=2.123 at 37cM). A significant pleiotropic linkage peak influencing both cannabis use and major depression was identified on chromosome 11, using a bivariate model (LOD=3.229 at 112cM). Follow-up of this pleiotropic signal identified a SNP 20kb upstream of NCAM1 (rs7932341) that shows significant bivariate association (p=3.10×10−5). However this SNP is rare (7 minor allele carriers) and does not drive the linkage signal observed. Conclusions—There appears to be significant genetic overlap between cannabis use and major depression among Mexican-Americans, a pleiotropy that appears to be localized to a region on chromosome 11q23 that has been previously linked to these phenotypes

    The Genetic contribution to solving the cocktail-party problem

    Get PDF
    Communicating in everyday situations requires solving the cocktail-party problem, or segregating the acoustic mixture into its constituent sounds and attending to those of most interest. Humans show dramatic variation in this ability, leading some to experience real-world problems irrespective of whether they meet criteria for clinical hearing loss. Here, we estimated the genetic contribution to cocktail-party listening by measuring speech-reception thresholds (SRTs) in 425 people from large families and ranging in age from 18 to 91 years. Roughly half the variance of SRTs was explained by genes (h 2 = 0.567). The genetic correlation between SRTs and hearing thresholds (HTs) was medium (ρ G = 0.392), suggesting that the genetic factors influencing cocktail-party listening were partially distinct from those influencing sound sensitivity. Aging and socioeconomic status also strongly influenced SRTs. These findings may represent a first step toward identifying genes for hidden hearing loss, or hearing problems in people with normal HTs
    • 

    corecore