537 research outputs found

    Compton scattering sequence reconstruction algorithm for the liquid xenon gamma-ray imaging telescope (LXeGRIT)

    Get PDF
    The Liquid Xenon Gamma-Ray Imaging Telescope (LXeGRIT) is a balloon born experiment sensitive to \g -rays in the energy band of 0.2-20 MeV. The main detector is a time projection chamber filled with high purity liquid xenon (LXeTPC), in which the three-dimensional location and energy deposit of individual \g -ray interactions are accurately measured in one homogeneous volume. To determine the \g -ray initial direction (Compton imaging), as well as to reject background, the correct sequence of interactions has to be determined. Here we report the development and optimization of an algorithm to reconstruct the Compton scattering sequence and show its performance on Monte Carlo events and LXeGRIT data.Comment: To appear in: Hard X-Ray, Gamma-Ray, and Neutron Detector Physics II, 2000; Proc. SPIE, vol. 4141; R.B. James & R.C. Schirato, ed

    Spectroscopy and Imaging Performance of the Liquid Xenon Gamma-Ray Imaging Telescope (LXeGRIT)

    Get PDF
    LXeGRIT is a balloon-borne Compton telescope based on a liquid xenon time projection chamber (LXeTPC) for imaging cosmic \g-rays in the energy band of 0.2-20 MeV. The detector, with 400 cm2^2 area and 7 cm drift gap, is filled with high purity LXe. Both ionization and scintillation light signals are detected to measure the energy deposits and the three spatial coordinates of individual \g -ray interactions within the sensitive volume. The TPC has been characterized with repeated measurements of its spectral and Compton imaging response to \g -rays from radioactive sources such as \na, \cs, \yt and Am-Be. The detector shows a linear response to \g -rays in the energy range 511 keV -4.4 MeV, with an energy resolution (FWHM) of \Delta E/E=8.8% \: \sqrt{1\MeV /E}. Compton imaging of \yt \g -ray events with two detected interactions is consistent with an angular resolution of \sim 3 degrees (RMS) at 1.8 MeV.Comment: To appear in: Hard X-Ray, Gamma-Ray and Neutron Detector Physics XI, 2000; Proc. SPIE, vol. 4140; K.A. Flanagan & O.H. Siegmund, ed

    Suitability of high-pressure xenon as scintillator for gamma ray spectroscopy

    Full text link
    In this paper we report the experimental study of high-pressure xenon used as a scintillator, in the context of developing a gamma ray detector. We measure a light yield near 2 photoelectrons per keV for xenon at 40 bar. Together with the light yield, we also measured an energy resolution of ~9% (FWHM) at 662 keV, dominated by the statistical fluctuations in the number of photoelectrons.Comment: 15 pages, 11 figure

    Measurement of Atmospheric Neutrino Oscillations with a High-Density Detector

    Get PDF
    We propose an experiment to test the hypothesis that the reported anomaly on atmospheric neutrino fluxes is due to nu_mu nu_x oscillations. It will rely both on a disappearance technique, exploiting the method of the dependence of the event rate on L/E, which was recently shown to be effective for detection of neutrino oscillation and measurement of the oscillation parameters, and on an appearance technique, looking for an excess of muon-less events at high energy produced by upward-going tau neutrinos. The detector will consist of iron planes interleaved by limited streamer tubes. The total mass will be about 30 kt. The possibility of recuperating most of the instrumentation from existing detectors allows to avoid R&D phases and to reduce construction time. In four years of data taking, this experiment will be sensitive to oscillations nu_mu nu_x with Delta m^2 > 10^-4 eV^2 and a mixing near to maximal, and answer the question whether nu_x is a sterile or a tau neutrino

    First operation and performance of a 200 lt double phase LAr LEM-TPC with a 40x76 cm^2 readout

    Full text link
    In this paper we describe the design, construction, and operation of a first large area double-phase liquid argon Large Electron Multiplier Time Projection Chamber (LAr LEM-TPC). The detector has a maximum drift length of 60 cm and the readout consists of a 40×7640\times 76 cm2^2 LEM and 2D projective anode to multiply and collect drifting charges. Scintillation light is detected by means of cryogenic PMTs positioned below the cathode. To record both charge and light signals, we have developed a compact acquisition system, which is scalable up to ton-scale detectors with thousands of charge readout channels. The acquisition system, as well as the design and the performance of custom-made charge sensitive preamplifiers, are described. The complete experimental setup has been operated for a first time during a period of four weeks at CERN in the cryostat of the ArDM experiment, which was equipped with liquid and gas argon purification systems. The detector, exposed to cosmic rays, recorded events with a single-channel signal-to-noise ratio in excess of 30 for minimum ionising particles. Cosmic muon tracks and their δ\delta-rays were used to assess the performance of the detector, and to estimate the liquid argon purity and the gain at different amplification fields.Comment: 23 pages, 21 figure

    Giant Liquid Argon Observatory for Proton Decay, Neutrino Astrophysics and CP-violation in the Lepton Sector (GLACIER)

    Get PDF
    GLACIER (Giant Liquid Argon Charge Imaging ExpeRiment) is a large underground observatory for proton decay search, neutrino astrophysics and CP-violation studies in the lepton sector. Possible underground sites are studied within the FP7 LAGUNA project (Europe) and along the JPARC neutrino beam in collaboration with KEK (Japan). The concept is scalable to very large masses.Comment: 4 pages, 1 figure, Contribution to the Workshop "European Strategy for Future Neutrino Physics", CERN, Oct. 200

    An Ontology of Soil Properties and Processes

    Get PDF
    Assessing the Underworld (ATU) is a large interdisciplinary UK research project, which addresses challenges in integrated inter-asset maintenance. As assets on the surface of the ground (e.g. roads or pave- ments) and those buried under it (e.g. pipes and cables) are supported by the ground, the properties and processes of soil a ect the performance of these assets to a signi cant degree. In order to make integrated deci- sions, it is necessary to combine the knowledge and expertise in multiple areas, such as roads, soil, buried assets, sensing, etc. This requires an underpinning knowledge model, in the form of an ontology. Within this context, we present a new ontology for describing soil properties (e.g. soil strength) and processes (e.g. soil compaction), as well as how they a ect each other. This ontology can be used to express how the ground a ects and is a ected by assets buried under the ground or on the ground surface. The ontology is written in OWL 2 and openly available from the University of Leeds data repository: http://doi.org/10.5518/54

    Stable operation with gain of a double phase Liquid Argon LEM-TPC with a 1 mm thick segmented LEM

    Full text link
    In this paper we present results from a test of a small Liquid Argon Large Electron Multiplier Time Projection Chamber (LAr LEM-TPC). This detector concept provides a 3D-tracking and calorimetric device capable of charge amplification, suited for next-generation neutrino detectors and possibly direct Dark Matter searches. During a test of a 3~lt chamber equipped with a 10×\times10~cm2^2 readout, cosmic muon data was recorded during three weeks of data taking. A maximum gain of 6.5 was achieved and the liquid argon was kept pure enough to ensure 20~cm drift (O(ppb)~O2_2 equivalent).Comment: 7 pages, 6 figures, to appear in Proc. of 1st International Workshop towards the Giant Liquid Argon Charge Imaging Experiment (GLA2010), Tsukuba (Japan), March 201

    First operation of a double phase LAr Large Electron Multiplier Time Projection Chamber with a two-dimensional projective readout anode

    Full text link
    We have previously reported on the construction and successful operation of the novel double phase Liquid Argon Large Electron Multiplier Time Projection Chamber (LAr LEM-TPC). This detector concept provides a 3D-tracking and calorimetric device capable of adjustable charge amplification, a promising readout technology for next-generation neutrino detectors and direct Dark Matter searches. In this paper, we report on the first operation of a LAr LEM-TPC prototype - with an active area of 10×\times10 cm2^2 and 21 cm drift length - equipped with a single 1 mm thick LEM amplifying stage and a two dimensional projective readout anode. Cosmic muon events were collected, fully reconstructed and used to characterize the performance of the chamber. The obtained signals provide images of very high quality and the energy loss distributions of minimum ionizing tracks give a direct estimate of the amplification. We find that a stable gain of 27 can be achieved with this detector configuration corresponding to a signal-over-noise ratio larger than 200 for minimum ionizing tracks. The decoupling of the amplification stage and the use of the 2D readout anode offer several advantages which are described in the text.Comment: 25 pages, 17 figure
    corecore