286 research outputs found

    Categorical combinators

    Get PDF
    Our main aim is to present the connection between λ-calculus and Cartesian closed categories both in an untyped and purely syntactic setting. More specifically we establish a syntactic equivalence theorem between what we call categorical combinatory logic and λ-calculus with explicit products and projections, with ÎČ and η-rules as well as with surjective pairing. “Combinatory logic” is of course inspired by Curry's combinatory logic, based on the well-known S, K, I. Our combinatory logic is “categorical” because its combinators and rules are obtained by extracting untyped information from Cartesian closed categories (looking at arrows only, thus forgetting about objects). Compiling λ-calculus into these combinators happens to be natural and provokes only n log n code expansion. Moreover categorical combinatory logic is entirely faithful to ÎČ-reduction where combinatory logic needs additional rather complex and unnatural axioms to be. The connection easily extends to the corresponding typed calculi, where typed categorical combinatory logic is a free Cartesian closed category where the notion of terminal object is replaced by the explicit manipulation of applying (a function to its argument) and coupling (arguments to build datas in products). Our syntactic equivalences induce equivalences at the model level. The paper is intended as a mathematical foundation for developing implementations of functional programming languages based on a “categorical abstract machine,” as developed in a companion paper (Cousineau, Curien, and Mauny, in “Proceedings, ACM Conf. on Functional Programming Languages and Computer Architecture,” Nancy, 1985)

    The duality of computation

    Get PDF
    http://www.acm.orgInternational audienceWe present the lambda-bar-mu-mu-tilde-calculus, a syntax for lambda-calculus + control operators exhibiting symmetries such as program/context and call-by-name/call-by-value. This calculus is derived from implicational Gentzen's sequent calculus LK, a key classical logical system in proof theory. Under the Curry-Howard correspondence between proofs and programs, we can see LK, or more precisely a formulation called LK-mu-mu-tilde, as a syntax-directed system of simple types for lambda-bar-mu-mu-tilde-calculus. For lambda-bar-mu-mu-tilde-calculus, choosing a call-by-name or call-by-value discipline for reduction amounts to choosing one of the two possible symmetric orientations of a critical pair. Our analysis leads us to revisit the question of what is a natural syntax for call-by-value functional computation. We define a translation of lambda-mu-calculus into lambda-bar-mu-mu-tilde-calculus and two dual translations back to lambda-calculus, and we recover known CPS translations by composing these translations

    Kripke Semantics for Martin-L\"of's Extensional Type Theory

    Full text link
    It is well-known that simple type theory is complete with respect to non-standard set-valued models. Completeness for standard models only holds with respect to certain extended classes of models, e.g., the class of cartesian closed categories. Similarly, dependent type theory is complete for locally cartesian closed categories. However, it is usually difficult to establish the coherence of interpretations of dependent type theory, i.e., to show that the interpretations of equal expressions are indeed equal. Several classes of models have been used to remedy this problem. We contribute to this investigation by giving a semantics that is standard, coherent, and sufficiently general for completeness while remaining relatively easy to compute with. Our models interpret types of Martin-L\"of's extensional dependent type theory as sets indexed over posets or, equivalently, as fibrations over posets. This semantics can be seen as a generalization to dependent type theory of the interpretation of intuitionistic first-order logic in Kripke models. This yields a simple coherent model theory, with respect to which simple and dependent type theory are sound and complete

    The play's the thing

    Get PDF
    For very understandable reasons phenomenological approaches predominate in the field of sensory urbanism. This paper does not seek to add to that particular discourse. Rather it takes Rorty’s postmodernized Pragmatism as its starting point and develops a position on the role of multi-modal design representation in the design process as a means of admitting many voices and managing multidisciplinary collaboration. This paper will interrogate some of the concepts underpinning the Sensory Urbanism project to help define the scope of interest in multi-modal representations. It will then explore a range of techniques and approaches developed by artists and designers during the past fifty years or so and comment on how they might inform the question of multi-modal representation. In conclusion I will argue that we should develop a heterogeneous tool kit that adopts, adapts and re-invents existing methods because this will better serve our purposes during the exploratory phase(s) of any design project that deals with complexity

    Existential witness extraction in classical realizability and via a negative translation

    Full text link
    We show how to extract existential witnesses from classical proofs using Krivine's classical realizability---where classical proofs are interpreted as lambda-terms with the call/cc control operator. We first recall the basic framework of classical realizability (in classical second-order arithmetic) and show how to extend it with primitive numerals for faster computations. Then we show how to perform witness extraction in this framework, by discussing several techniques depending on the shape of the existential formula. In particular, we show that in the Sigma01-case, Krivine's witness extraction method reduces to Friedman's through a well-suited negative translation to intuitionistic second-order arithmetic. Finally we discuss the advantages of using call/cc rather than a negative translation, especially from the point of view of an implementation.Comment: 52 pages. Accepted in Logical Methods for Computer Science (LMCS), 201

    Bistability: An Extensional Characterization of Sequentiality

    Full text link

    Isomeric states in 253^{253}No

    Get PDF
    6 pagesInternational audienceIsomeric states in 253No have been investigated by conversion-electron and gamma-ray spectroscopy with the GABRIELA detection system. The 31 micro second isomer reported more than 30 years ago is found to decay to the ground state of 253No by the emission of a 167 keV M2 transition. The spin and parity of this low-lying isomeric state are established to be 5/2+. The presence of another longer-lived isomeric state is also discussed

    First identification of excited states in the Tz_z = 1/2 nucleus 93^{93}Pd

    No full text
    The first experimental information about excited states in the N = Z + 1 nucleus 93Pd is presented. The experiment was performed using a 205 MeV 58Ni beam from the Vivitron accelerator at IReS, Strasbourg, impinging on a bismuth-backed 40Ca target. Gamma-rays, neutrons and charged particles emitted in the reactions were detected using the Ge detector array Euroball, the Neutron Wall liquid-scintillator array and the Euclides Si charged-particle detector system. The experimental level scheme is compared with the results of new shell model calculations which predict a coupling scheme with aligned neutron-proton pairs to greatly influence the level structure of N≈ZN\approx Z nuclei at low excitation energies

    Relating Sequent Calculi for Bi-intuitionistic Propositional Logic

    Get PDF
    Bi-intuitionistic logic is the conservative extension of intuitionistic logic with a connective dual to implication. It is sometimes presented as a symmetric constructive subsystem of classical logic. In this paper, we compare three sequent calculi for bi-intuitionistic propositional logic: (1) a basic standard-style sequent calculus that restricts the premises of implication-right and exclusion-left inferences to be single-conclusion resp. single-assumption and is incomplete without the cut rule, (2) the calculus with nested sequents by Gore et al., where a complete class of cuts is encapsulated into special "unnest" rules and (3) a cut-free labelled sequent calculus derived from the Kripke semantics of the logic. We show that these calculi can be translated into each other and discuss the ineliminable cuts of the standard-style sequent calculus.Comment: In Proceedings CL&C 2010, arXiv:1101.520
    • 

    corecore