35 research outputs found

    Second-order magnetic critical points at finite magnetic fields: Revisiting Arrott plots

    Get PDF
    The so-called Arrott plot, which consists in plotting H/M against M2, with H the applied magnetic field and M the magnetization, is used to extract valuable information in second-order magnetic phase transitions. Besides, it is widely accepted that a negative slope in the Arrott plot is indicative of a first-order magnetic transition. This is known as the Banerjee criterion. In consequence, the zero-field transition temperature T∗ is reported as the characteristic first-order transition temperature. By carefully analyzing the mean-field Landau model used for studying first-order magnetic transitions, we show in this work that T∗ corresponds in fact to a triple point where three first-order lines meet. More importantly, this analysis reveals the existence of two symmetricalsecond-order critical points at finite magnetic field (Tc,±Hc). We then show that a modified Arrott plot can be used to obtain information about these second-order critical points. To support this idea we analyze experimentaldata on La2/3Ca1/3MnO3 and discuss an estimate for the location of the triple point and the second-order critical pointsFil: Bustingorry, Sebastián. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pomiro, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Aurelio, Gabriela. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Curiale, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentin

    Dynamics and geometry of magnetic domains walls in ultra-thin magnetic multilayers with perpendicular anisotropy

    Get PDF
    El presente proyecto de carácter experimental-teórico generará conocimiento sobre las propiedades magnéticas y magneto-electrónicas de películas delgadas diseñadas a la escala nanométrica. Proponemos estudiar, la dinámica del desplazamiento de paredes de dominios magnéticos en multicapas ferromagnéticas con anisotropía perpendicular y su relación con las propiedades geométricas. En particular la propiedad geométrica en la cual estamos interesados cuantifica las fluctuaciones en la posición de la pared de dominio y es conocida comúnmente como "rugosidad".Para ello, utilizaremos distintas herramientas experimentales entre las cuales podemos destacar la microscopía Magneto-Óptica de Efecto Kerr Polar (PMOKE). Esta técnica nos permitirá acceder no solo a la dependencia de la velocidad con el campo magnético aplicado, sino también a la posición de la pared de dominio y así cuantificar su rugosidad. También se utilizaran las técnicas de resonancia ferromagnética (FMR) y magnetización DC (VSM y SQUID).Para avanzar en la comprensión del origen meso y microscópico de los resultados obtenidos, se realizarán simulaciones numéricas en el marco de modelos efectivos de física estadística y cuando sea necesario se incluirán los efectos cuánticos para dar cuenta de la interacción de los portadores de carga polarizados en espín con las paredes de dominio.This project will generate experimental-theoretical knowledge of magnetic and magneto-electronic properties of nanometric thin films. We propose to study the domain wall dynamics in perpendicular magnetized ferromagnetic multilayer and their relation with geometric properties. In particular, the geometric property in which we are interested is known as "roughness", and quantifies the fluctuations in the position of the domain wall.To do this, we will use different experimental tools, among which we highlight Magneto-Optical Microscopy Polar Kerr Effect (PMOKE). This technique will allow us to access not only the domain wall speed dependence with the applied magnetic field, but also the position of the domain wall and thus quantify its roughness. The techniques of ferromagnetic resonance (FMR) and DC magnetization (VSM and SQUID) will also be used.In order to go deep in the understanding of the meso and microscopic origin of the obtained results, numerical simulations will be carried out within the framework of effective models of statistical physics and, when necessary, quantum effects will be included to account for the interaction between the spin polarized charge carriers and the domain walls

    Magnetic domain wall creep and depinning: A scalar field model approach

    Get PDF
    Magnetic domain wall motion is at the heart of new magnetoelectronic technologies and hence the need for a deeper understanding of domain wall dynamics in magnetic systems. In this context, numerical simulations using simple models can capture the main ingredients responsible for the complex observed domain wall behavior. We present a scalar field model for the magnetization dynamics of quasi-two-dimensional systems with a perpendicular easy axis of magnetization which allows a direct comparison with typical experimental protocols, used in polar magneto-optical Kerr effect microscopy experiments. We show that the thermally activated creep and depinning regimes of domain wall motion can be reached and the effect of different quenched disorder implementations can be assessed with the model. In particular, we show that the depinning field increases with the mean grain size of a Voronoi tessellation model for the disorder.Fil: Caballero, Nirvana Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Ferrero, Ezequiel E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Kolton, Alejandro Benedykt. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Curiale, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Jeudy, Vincent. Université Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia. Université Paris–Saclay; FranciaFil: Bustingorry, Sebastián. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentin

    Common universal behavior of magnetic domain walls driven by spin-polarized electrical current and magnetic field

    Get PDF
    We explore the universal behaviors of a magnetic domain wall driven by the spin-transfer torque of an electrical current, in a ferromagnetic (Ga,Mn)(As,P) thin film with perpendicular magnetic anisotropy. For a current transverse to the domain wall, the dynamics of the thermally activated creep regime and the depinning transition are found to be compatible with a self-consistent universal description of magnetic-field-induced domain-wall dynamics. This common universal behavior, characteristic of the so-called quenched Edwards-Wilkinson universality class, is confirmed by an independent analysis of domain-wall roughness. Complementary investigations reveal the directional properties of interaction between current and domain walls which result in the instability of their transverse orientation.Fil: Diaz Pardo, R.. Centre National de la Recherche Scientifique; Francia. Université Paris Sud; FranciaFil: Moisan, N.. Université Paris Sud; Francia. Centre National de la Recherche Scientifique; FranciaFil: Albornoz, Lucas Javier. Université Paris Sud; Francia. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Lemaître, A.. Université Paris Sud; Francia. Centre National de la Recherche Scientifique; FranciaFil: Curiale, Carlos Javier. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Jeudy, V.. Centre National de la Recherche Scientifique; Francia. Université Paris Sud; Franci

    Joule heating and current-induced domain wall motion

    Get PDF
    We investigate numerically and experimentally the Joule heating produced by current pulses and its contribution to current-induced domain wall (DW) motion in a (Ga,Mn)As ferromagnetic semiconductor. Different thermal coupling between tracks and substrates are explored. A direct contact leads to a logarithmic transient temperature rise and a stationary state determined by the substrate thickness. The introduction of a low thermal conducting (Ga,In)As interlayer produces an additional temperature rise whose time variation and magnitude are analyzed. Experimentally, the measured temperature rises present a good agreement with predictions over more than four orders of magnitude in time for values of the heat conductivity and of the heat capacity close to those reported in the literature. The Joule heating is shown to produce non-linearities in the domain wall velocity versus current density characteristics. A correction of Joule heating is proposed and permits the identification of the flow regimes from a comparison of domain-wall dynamics in tracks presenting different pinning characteristics.Fil: Curiale, Carlos Javier. Centre National de la Recherche Scientifique; Francia. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Lemaître, A.. Centre National de la Recherche Scientifique; FranciaFil: Niazi, T.. Centre National de la Recherche Scientifique; FranciaFil: Faini, G.. Centre National de la Recherche Scientifique; FranciaFil: Jeudy, V.. No especifíca

    Tuning Ginzburg-Landau theory to quantitatively study thin ferromagnetic materials

    Get PDF
    Along with experiments, numerical simulations are key to gaining insight into the underlying mechanisms governing domain wall motion in thin ferromagnetic systems. However, a direct comparison between numerical simulation of model systems and experimental results still represents a great challenge. Here, we present a tuned Ginzburg-Landau model to quantitatively study the dynamics of domain walls in quasi two-dimensional ferromagnetic systems with perpendicular magnetic anisotropy. This model incorporates material and experimental parameters and the micromagnetic prescription for thermal fluctuations, allowing us to perform material-specific simulations and at the same time recover universal features. We show that our model quantitatively reproduces previous experimental velocity-field data in the archetypal perpendicular magnetic anisotropy Pt/Co/Pt ultra-thin films in the three dynamical regimes of domain wall motion (creep, depinning and flow). In addition, we present a statistical analysis of the domain wall width parameter, showing that our model can provide detailed nano-scale information while retaining the complex behavior of a statistical disordered model.Comment: 18 pages, 8 figure

    Domain-wall roughness in GdFeCo thin films: crossover length scales and roughness exponents

    Full text link
    Domain-wall dynamics and spatial fluctuations are closely related to each other and to universal features of disordered systems. Experimentally measured roughness exponents characterizing spatial fluctuations have been reported for magnetic thin films, with values generally different from those predicted by the equilibrium, depinning and thermal reference states. Here, we study the roughness of domain walls in GdFeCo thin films over a large range of magnetic field and temperature. Our analysis is performed in the framework of a model considering length-scale crossovers between the reference states, which is shown to bridge the differences between experimental results and theoretical predictions. We also quantify for the first time the size of the depinning avalanches below the depinning field at finite temperatures.Comment: 10 pages, 6 figures. The first two authors contributed equally to this wor

    Spin Drift Velocity, Polarization, and Current-Driven Domain-Wall Motion in (Ga,Mn)(As,P)

    Get PDF
    Current-driven domain wall motion is studied in (Ga,Mn)(As,P) ferromagnetic semiconducting tracks with perpendicular anisotropy. A linear steady state flow regime is evidenced over a large temperature range of the ferromagnetic phase (0.1Tc < T < Tc). Close to 0 K, the domain wall velocity is found to coincide with the spin drift velocity. This result is obtained below the intrinsic threshold for domain wall motion which implies a non-adiabatic contribution to the spin transfer torque. The current spin polarization is deduced close to 0 K and to Tc. It suggests that the temperature dependence of the spin polarization can be inferred from the domain wall dynamics.Fil: Curiale, Carlos Javier. Centre National de la Recherche Scientifique; Francia. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Lemaître, A.. Centre National de la Recherche Scientifique; FranciaFil: Ulysse, C.. Centre National de la Recherche Scientifique; FranciaFil: Faini, G.. Centre National de la Recherche Scientifique; FranciaFil: Jeudy, V.. No especifíca

    Statistically meaningful measure of domain-wall roughness in magnetic thin films

    Get PDF
    Domain walls in magnetic thin films display a complex dynamical response when subject to an external drive. It is claimed that different dynamic regimes are correlated with the domain-wall roughness, i.e., with the fluctuations of domain-wall position due to the inherent disorder in the system. Therefore, key to understanding the dynamics of domain walls is to have a statistically meaningful measure of the domain-wall roughness. Here we present a thorough study of the roughness parameters, i.e., roughness exponent and roughness amplitude, for domain walls in a ferrimagnetic GdFeCo thin film in the creep regime. Histograms of roughness parameters are constructed with more than 40 independent realizations under the same experimental conditions, and the average values and standard deviations are compared in different conditions. We found that the most prominent feature of the obtained distributions is their large standard deviations, which is a signature of large fluctuations. We show that even if the roughness parameters for a particular domain wall are well known, these parameters are not necessarily representative of the underlying physics of the system. In the low field limit, within the creep regime of domain-wall motion, we found the average roughness exponent and roughness amplitude to be around 0.75 and 0.45 μm2, respectively. When an in-plane magnetic field is applied we observed that, even though the distributions are wide, changes in the mean values of roughness parameters can be identified; the roughness exponent decreasing to values around 0.72 while the roughness amplitude increases to 0.65 μm2. Our results call for a careful consideration of statistical averaging over different domains walls when reporting roughness exponents.Fil: Jordán Ringgold, Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; ArgentinaFil: Albornoz, Lucas Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Gorchon, Jon. Lawrence Berkeley National Laboratory; Estados UnidosFil: Lambert, Charles Henri. University of California at Berkeley; Estados UnidosFil: Salahuddin, Sayeef. University of California at Berkeley; Estados UnidosFil: Bokor, Jeffrey. University of California at Berkeley; Estados Unidos. Lawrence Berkeley National Laboratory; Estados UnidosFil: Curiale, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Bustingorry, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentin

    Universal Critical Exponents of the Magnetic Domain Wall Depinning Transition

    Full text link
    Magnetic field driven domain wall dynamics in a ferrimagnetic GdFeCo thin film with perpendicular magnetic anisotropy is studied using low temperature magneto-optical Kerr microscopy. Measurements performed in a practically athermal condition allow for the direct experimental determination of the velocity (β=0.30±0.03 \beta = 0.30 \pm 0.03 ) and correlation length (ν=1.3±0.3 \nu = 1.3 \pm 0.3 ) exponents of the depinning transition. The whole family of exponents characterizing the transition is deduced, providing evidence that the depinning of magnetic domain walls is better described by the quenched Edwards-Wilkinson universality class.Comment: 6 pages, 3 figures. Ancillary Material with 10 pages and 4 figures is also include
    corecore