866 research outputs found

    Superfield approach to a novel symmetry for non-Abelian gauge theory

    Full text link
    In the framework of superfield formalism, we demonstrate the existence of a new local, covariant, continuous and nilpotent (dual-BRST) symmetry for the BRST invariant Lagrangian density of a self-interacting two (1+11 + 1)-dimensional (2D) non-Abelian gauge theory (having no interaction with matter fields). The local and nilpotent Noether conserved charges corresponding to the above continuous symmetries find their geometrical interpretation as the translation generators along the odd (Grassmannian) directions of the four (2+2)2 + 2)-dimensional supermanifold.Comment: LaTeX, 12 pages, equations (4.2)--(4.6) correcte

    Topological aspects in non-Abelian gauge theory

    Full text link
    We discuss the BRST cohomology and exhibit a connection between the Hodge decomposition theorem and the topological properties of a two dimensional free non-Abelian gauge theory having no interaction with matter fields. The topological nature of this theory is encoded in the vanishing of the Laplacian operator when equations of motion are exploited. We obtain two sets of topological invariants with respect to BRST and co-BRST charges on the two dimensional manifold and show that the Lagrangian density of the theory can be expressed as the sum of terms that are BRST- and co-BRST invariants.Comment: (1+11) pages, LaTeX, no figure

    Superfield Approach To Nilpotent Symmetries For QED From A Single Restriction: An Alternative To The Horizontality Condition

    Full text link
    We derive together the exact local, covariant, continuous and off-shell nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for the U(1) gauge field (A_\mu), the (anti-)ghost fields ((\bar C)C) and the Dirac fields (\psi, \bar\psi) of the Lagrangian density of a four (3 + 1)-dimensional QED by exploiting a single restriction on the six (4, 2)-dimensional supermanifold. A set of four even spacetime coordinates x^\mu (\mu = 0, 1, 2, 3) and two odd Grassmannian variables \theta and \bar\theta parametrize this six dimensional supermanifold. The new gauge invariant restriction on the above supermanifold owes its origin to the (super) covariant derivatives and their intimate relations with the (super) 2-form curvatures (\tilde F^{(2)})F^{(2)} constructed with the help of (super) 1-form gauge connections (\tilde A^{(1)})A^{(1)} and (super) exterior derivatives (\tilde d)d. The results obtained separately by exploiting (i) the horizontality condition, and (ii) one of its consistent extensions, are shown to be a simple consequence of this new single restriction on the above supermanifold. Thus, our present endeavour provides an alternative to (and, in some sense, generalization of) the horizontality condition of the usual superfield formalism applied to the derivation of BRST symmetries.Comment: LaTeX file, 15 pages, journal-versio

    Estimating European volatile organic compound emissions using satellite observations of formaldehyde from the Ozone Monitoring Instrument

    Get PDF
    Emission of non-methane Volatile Organic Compounds (VOCs) to the atmosphere stems from biogenic and human activities, and their estimation is difficult because of the many and not fully understood processes involved. In order to narrow down the uncertainty related to VOC emissions, which negatively reflects on our ability to simulate the atmospheric composition, we exploit satellite observations of formaldehyde (HCHO), an ubiquitous oxidation product of most VOCs, focusing on Europe. HCHO column observations from the Ozone Monitoring Instrument (OMI) reveal a marked seasonal cycle with a summer maximum and winter minimum. In summer, the oxidation of methane and other long-lived VOCs supply a slowly varying background HCHO column, while HCHO variability is dominated by most reactive VOC, primarily biogenic isoprene followed in importance by biogenic terpenes and anthropogenic VOCs. The chemistry-transport model CHIMERE qualitatively reproduces the temporal and spatial features of the observed HCHO column, but display regional biases which are attributed mainly to incorrect biogenic VOC emissions, calculated with the Model of Emissions of Gases and Aerosol from Nature (MEGAN) algorithm. These "bottom-up" or a-priori emissions are corrected through a Bayesian inversion of the OMI HCHO observations. Resulting "top-down" or a-posteriori isoprene emissions are lower than "bottom-up" by 40% over the Balkans and by 20% over Southern Germany, and higher by 20% over Iberian Peninsula, Greece and Italy. We conclude that OMI satellite observations of HCHO can provide a quantitative "top-down" constraint on the European "bottom-up" VOC inventories

    Short distance physics with heavy quark potentials

    Get PDF
    We present lattice studies of heavy quark potentials in the quenched approximation of QCD at finite temperatures. Both, the color singlet and color averaged potentials are calculated. While the potentials are well known at large distances, we give a detailed analysis of their short distance behavior (from 0.015 fm to 1 fm) near the critical temperature. At these distances we expect that the T-dependent potentials go over into the zero temperature potential. Indeed, we find evidences that the temperature influence gets suppressed and the potentials starts to become a unique function of the underlying distance scale. We use this feature to normalize the heavy quark potentials at short distances and extract the free energy of the quark system in a gluonic heat bath.Comment: Lattice2001(hightemp), 3 pages, 2 figure

    Abelian 3-form gauge theory: superfield approach

    Full text link
    We discuss a D-dimensional Abelian 3-form gauge theory within the framework of Bonora-Tonin's superfield formalism and derive the off-shell nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for this theory. To pay our homage to Victor I. Ogievetsky (1928-1996), who was one of the inventors of Abelian 2-form (antisymmetric tensor) gauge field, we go a step further and discuss the above D-dimensional Abelian 3-form gauge theory within the framework of BRST formalism and establish that the existence of the (anti-)BRST invariant Curci-Ferrari (CF) type of restrictions is the hallmark of any arbitrary p-form gauge theory (discussed within the framework of BRST formalism).Comment: LaTeX file, 8 pages, Talk delivered at BLTP, JINR, Dubna, Moscow Region, Russi

    An important fingerprint of wildfires on the European aerosol load

    Get PDF
    Abstract. Wildland fires represent the major source of fine aerosols, i.e., atmospheric particles with diameters <1 μm. The largest numbers of these fires occur in Africa, Asia and South America, but a not negligible fraction also occurs in Eastern Europe and former USSR countries, particularly in the Russian Federation, Ukraine and Kazakhstan. Besides the impact of large forest fires, recent studies also highlighted the crucial role played by routine agricultural fires in Eastern Europe and Russia on the Arctic atmosphere. An evaluation of the impact of these fires over Europe is currently not available. The assessment of the relative contribution of fires to the European aerosol burden is hampered by the complex mixing of natural and anthropogenic particle types across the continent. In this study we use long term (2002–2007) satellite-based fires and aerosol data coupled to atmospheric trajectory modelling in the attempt to estimate the wildfires contribution to the European aerosol optical thickness (AOT). Based on this dataset, we provide evidence that fires-related aerosols play a major role in shaping the AOT yearly cycle at the continental scale. In general, the regions most impacted by wildfires emissions and/or transport are Eastern and Central Europe as well as Scandinavia. Conversely, a minor impact is found in Western Europe and in the Western Mediterranean. We estimate that in spring 5 to 35% of the European fine fraction AOT (FFAOT) is attributable to wildland fires. The estimated impact maximizes in April (20–35%) in Eastern and Central Europe as well as in Scandinavia and in the Central Mediterranean. An important contribution of wildfires to the FFAOT is also found in summer over most of the continent, particularly in August over Eastern Europe (28%) and the Mediterranean regions, from Turkey (34%) to the Western Mediterranean (25%). Although preliminary, our results suggest that this fires-related, continent-wide haze plays a not negligible role on the European radiation budget, and possibly, on the European air quality, therefore representing a clear target for mitigation

    Scaling, asymptotic scaling and Symanzik improvement. Deconfinement temperature in SU(2) pure gauge theory

    Full text link
    We report on a high statistics simulation of SU(2) pure gauge field theory at finite temperature, using Symanzik action. We determine the critical coupling for the deconfinement phase transition on lattices up to 8 x 24, using Finite Size Scaling techniques. We find that the pattern of asymptotic scaling violation is essentially the same as the one observed with conventional, not improved action. On the other hand, the use of effective couplings defined in terms of plaquette expectation values shows a precocious scaling, with respect to an analogous analysis of data obtained by the use of Wilson action, which we interpret as an effect of improvement.Comment: 43 pages ( REVTeX 3.0, self-extracting shell archive, 13 PostScript figs.), report IFUP-TH 21/93 (2 TYPOS IN FORMULAS CORRECTED,1 CITATION UPDATED,CITATIONS IN TEXT ADDED
    • …
    corecore