13,098 research outputs found
Refactoring smelly spreadsheet models
Identifying bad design patterns in software is a successful and inspiring research trend. While these patterns do not necessarily correspond to software errors, the fact is that they raise potential problematic issues, often referred to as code smells, and that can for example compromise maintainability or evolution. The identification of code smells in spreadsheets, which can be viewed as software development environments for non-professional programmers, has already been the subject of confluent researches by different groups. While these research groups have focused on detecting smells on concrete spreadsheets, or spreadsheet instances, in this paper we propose a comprehensive set of smells for abstract representations of spreadsheets, or spreadsheet models. We also propose a set of refactorings suggesting how spreadsheet models can become simpler to understand, manipulate and evolve. Finally we present the integration of both smells and refactorings under the MDSheet framework.Part funded by ERDF - European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT - Fundação para a Ciência e a Tecnologia within projects FCOMP-01-0124-FEDER-022701 and Network Sensing for Critical Systems Monitoring (NORTE-01-0124-FEDER-000058), ref. BIM-2013 BestCase RL3.2 UMINHO
Kinematic Constraints to the Transition Redshift from SNe Ia Union Data
The kinematic approach to cosmological tests provides a direct evidence to
the present accelerating stage of the universe which does not depend on the
validity of general relativity, as well as on the matter-energy content of the
Universe. In this context, we consider here a linear two-parameter expansion
for the decelerating parameter, , where and are
arbitrary constants to be constrained by the Union supernovae data. By assuming
a flat Universe we find that the best fit to the pair of free parameters is
() = ( whereas the transition redshift is () (). This
kinematic result is in agreement with some independent analyzes and
accommodates more easily many dynamical flat models (like CDM).Comment: 10 pages, 4 figures, 1 tabl
The Geometry of Entanglement Sudden Death
In open quantum systems, entanglement can vanish faster than coherence. This
phenomenon is usually called sudden death of entanglement. In this paper sudden
death of entanglement is discussed from a geometrical point of view, in the
context of two qubits. A classification of possible scenarios is presented,
with important known examples classified. Theoretical and experimental
construction of other examples is suggested as well as large dimensional and
multipartite versions of the effect.Comment: 6 pages, 2 figures, references added, initial paragraph corrected,
sectioning adopted, some parts rewritten; accepted by New J. Phy
Melting temperature of screened Wigner crystal on helium films by molecular dynamics
Using molecular dynamics (MD) simulation, we have calculated the melting
temperature of two-dimensional electron systems on \AA-\AA helium
films supported by substrates of dielectric constants
at areal densities varying from cm to cm. Our results are in good agreement with the available
theoretical and experimental results.Comment: 4 pages and 4 figure
Fundaments of the ethical acting in university students
It is urgent that the superior Education in the health area develops in the students a pro-active ethical commitment which is translated into the creation of socio-professional and rational and clarified socio-cultural values.info:eu-repo/semantics/publishedVersio
A thorough analysis of the short- and mid-term activity-related variations in the solar acoustic frequencies
The frequencies of the solar acoustic oscillations vary over the activity
cycle. The variations in other activity proxies are found to be well correlated
with the variations in the acoustic frequencies. However, each proxy has a
slightly different time behaviour. Our goal is to characterize the differences
between the time behaviour of the frequency shifts and of two other activity
proxies, namely, the area covered by sunspots and the 10.7cm flux. We define a
new observable that is particularly sensitive to the short-term frequency
variations. We then compare the observable when computed from model frequency
shifts and from observed frequency shifts obtained with the Global Oscillation
Network Group (GONG) for cycle 23. Our analysis shows that on the shortest
time-scales the variations in the frequency shifts seen in the GONG
observations are strongly correlated with the variations in the area covered by
sunspots. However, a significant loss of correlation is still found. We verify
that the times when the frequency shifts and the sunspot area do not vary in a
similar way tend to coincide with the times of the maxima of the quasi-biennial
variations seen in the solar seismic data. A similar analysis of the relation
between the 10.7cm flux and the frequency shifts reveals that the short-time
variations in the frequency shifts follow even more closely those of the 10.7cm
flux than those of the sunspot area. However, a loss of correlation between
frequency shifts and 10.7cm flux variations is still found around the same
times.Comment: 7 pages, 6 figures, accepted for publication in MNRA
Spin-polarized transport in ferromagnetic multilayered semiconductor nanostructures
The occurrence of inhomogeneous spin-density distribution in multilayered
ferromagnetic diluted magnetic semiconductor nanostructures leads to strong
dependence of the spin-polarized transport properties on these systems. The
spin-dependent mobility, conductivity and resistivity in
(Ga,Mn)As/GaAs,(Ga,Mn)N/GaN, and (Si,Mn)/Si multilayers are calculated as a
function of temperature, scaled by the average magnetization of the diluted
magnetic semiconductor layers. An increase of the resistivity near the
transition temperature is obtained. We observed that the spin-polarized
transport properties changes strongly among the three materials.Comment: 3 pages, 4 figure
On the relation between activity-related frequency shifts and the sunspot distribution over the solar cycle 23
The activity-related variations in the solar acoustic frequencies have been
known for 30 years. However, the importance of the different contributions is
still not well established. With this in mind, we developed an empirical model
to estimate the spot-induced frequency shifts, which takes into account the
sunspot properties, such as area and latitude. The comparison between the model
frequency shifts obtained from the daily sunspot records and those observed
suggests that the contribution from a stochastic component to the total
frequency shifts is about 30%. The remaining 70% is related to a global,
long-term variation. We also propose a new observable to investigate the short-
and mid-term variations of the frequency shifts, which is insensitive to the
long-term variations contained in the data. On the shortest time scales the
variations in the frequency shifts are strongly correlated with the variations
in the total area covered by sunspots. However, a significant loss of
correlation is still found, which cannot be fully explained by ignoring the
invisible side of the Sun when accounting for the total sunspot area. We also
verify that the times when the frequency shifts and the sunspot areas do not
vary in a similar way tend to coincide with the times of the maximum amplitude
of the quasi-biennial variations found in the seismic data.Comment: 4 pages, 2 figures, proceedings of the Joint TASC2 - KASC9 Workshop -
SPACEINN - HELAS8 Conference "Seismology of the Sun and the Distant Stars
2016: Using Today's Successes to Prepare the Future". To be published by the
EPJ Web of Conference
Measuring the extent of convective cores in low-mass stars using Kepler data: towards a calibration of core overshooting
Our poor understanding of the boundaries of convective cores generates large
uncertainties on the extent of these cores and thus on stellar ages. Our aim is
to use asteroseismology to consistently measure the extent of convective cores
in a sample of main-sequence stars whose masses lie around the mass-limit for
having a convective core. We first test and validate a seismic diagnostic that
was proposed to probe in a model-dependent way the extent of convective cores
using the so-called ratios, which are built with and
modes. We apply this procedure to 24 low-mass stars chosen among Kepler targets
to optimize the efficiency of this diagnostic. For this purpose, we compute
grids of stellar models with both the CESAM2k and MESA evolution codes, where
the extensions of convective cores are modeled either by an instantaneous
mixing or as a diffusion process. Among the selected targets, we are able to
unambiguously detect convective cores in eight stars and we obtain seismic
measurements of the extent of the mixed core in these targets with a good
agreement between the CESAM2k and MESA codes. By performing optimizations using
the Levenberg-Marquardt algorithm, we then obtain estimates of the amount of
extra-mixing beyond the core that is required in CESAM2k to reproduce seismic
observations for these eight stars and we show that this can be used to propose
a calibration of this quantity. This calibration depends on the prescription
chosen for the extra-mixing, but we find that it should be valid also for the
code MESA, provided the same prescription is used. This study constitutes a
first step towards the calibration of the extension of convective cores in
low-mass stars, which will help reduce the uncertainties on the ages of these
stars.Comment: 27 pages, 15 figures, accepted in A&
- …