16 research outputs found

    Tratamento medicamentoso dos tumores hipofisários. parte II: adenomas secretores de ACTH, TSH e adenomas clinicamente não-funcionantes

    Full text link

    All about neosporosis in Brazil

    Full text link

    The influence of gelation rate on the physical properties/structure of salt-induced gels of soy protein isolate-gellan gum

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)The cold-set gelation of soy protein isolate (SPI)-gellan gum was induced by the addition of salts (KCl or CaCl(2)) using two different procedures: the direct addition of salts (fast gelation) or the diffusion of salts through a membrane (slow gelation). The mechanical properties, syneresis and microstructure of the mixed gels were evaluated, as well as for gellan and SPI gels. The mixed gels induced by calcium diffusion were stronger and more deformable than gels induced by the direct addition of calcium, while the opposite occurred for potassium-induced gels. All the mixed gels were macroscopically homogeneous, but at the microscopic level two independent networks could be observed. These two separate networks were more evident for the calcium-induced gels, and the structural characteristics depended strongly on the concentration of the protein and the polysaccharide. However an organized microstructure with the formation of microtubes surrounded by other network was only observed for the mixed gels induced by calcium diffusion at the higher protein/polysaccharide (10:1) ratio. Thus besides the composition and concentration of the biopolymers, the results showed that the type of salt and its velocity of incorporation led to gels with different structures and consequently different mechanical properties. (C) 2011 Elsevier Ltd. All rights reserved.25717101718Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPESP [06/58414-1, 04/08517-3]CNPq [301869/2006-5, 478691/2007-6

    Development of Na-CN-kappa-carrageenan Microbeads for the Encapsulation of Lipophilic Compounds

    No full text
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)The ionotropic gelation of double-layered emulsions composed of sodium caseinate and kappa-carrageenan at pH values of 7 and 3.5 was evaluated, in order to obtain potential encapsulation matrices for hydrophobic compounds. The influence of some of the extrusion process variables (nozzle diameter at fluid exit and collecting distance) on the microbead production was studied, as well as the stability of the microbeads. The fluid nozzle diameter showed little influence on the shape of the microbeads, with a slight tendency for a decrease in microbead diameter with increase in fluid nozzle diameter. On the other hand, the collecting distance strongly influenced the microbead shape and they became more spherical (aspect ratio was reduced from similar to 2.0 to similar to 1.4) as the collecting distance was increased from 10 cm to 50 cm. The emulsion pH did not affect the aspect ratio of the microbeads, but the diameter was greater for microbeads produced at pH 3.5. This difference was attributed to the kind of interactions occurring between the kappa-carrageenan and sodium caseinate at these distinct pH values. The microbeads were highly unstable when dispersed in deionized water, sugar solutions and low salt concentrations, releasing the encapsulated oil. However, no release of oil from the microbeads was observed when they were dispersed in ethanol or potassium chloride solutions with concentrations above 0.75 %, although their shape was modified when dispersed in ethanol. In general, the results obtained demonstrated the viability of the extrusion process to produce biopolymer-based microbeads and the potential application of these systems.73264275Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPESP [2007/58017-5, 08/57906-3]CNPq [304611/2009-3, 573913/2008-0

    Comparison of tensile strength of different carbon fabric reinforced epoxy composites

    No full text
    Carbon fabric/epoxy composites are materials used in aeronautical industry to manufacture several components as flaps, aileron, landing-gear doors and others. To evaluate these materials become important to know their mechanical properties, for example, the tensile strength. Tensile tests are usually performed in aeronautical industry to determinate tensile property data for material specifications, quality assurance and structural analysis. For this work, it was manufactured four different laminate families (F155/PW, F155/HS, F584/PW and F584/HS) using pre-impregnated materials (prepregs) based on F155TM and F584TM epoxy resins reinforced with carbon fiber fabric styles Plain Weave (PW) and Eight Harness Satin (8HS). The matrix F155TM code is an epoxy resin type DGEBA (diglycidil ether of bisphenol A) that contains a curing agent and the F584TM code is a modified epoxy resin type. The laminates were obtained by handing lay-up process following an appropriate curing cycle in autoclave. The samples were evaluated by tensile tests according to the ASTM D3039. The F584/PW laminates presented the highest values of tensile strength. However, the highest modulus results were determined for the 8HS composite laminates. The correlation of these results emphasizes the importance of the adequate combination of the polymeric matrix and the reinforcement arrangement in the structural composite manufacture. The microscopic analyses of the tested specimens show valid failure modes for composites used in aeronautical industry
    corecore