11,188 research outputs found

    On the nature of the spin-polarized hole states in a quasi-two-dimensional GaMnAs ferromagnetic layer

    Full text link
    A self-consistent calculation of the density of states and the spectral density function is performed in a two-dimensional spin-polarized hole system based on a multiple-scattering approximation. Using parameters corresponding to GaMnAs thin layers, a wide range of Mn concentrations and hole densities have been explored to understand the nature, localized or extended, of the spin-polarized holes at the Fermi level for several values of the average magnetization of the Mn ystem. We show that, for a certain interval of Mn and hole densities, an increase on the magnetic order of the Mn ions come together with a change of the nature of the states at the Fermi level. This fact provides a delocalization of spin-polarized extended states anti-aligned to the average Mn magnetization, and a higher spin-polarization of the hole gas. These results are consistent with the occurrence of ferromagnetism with relatively high transition temperatures observed in some thin film samples and multilayered structures of this material.Comment: 3 page

    Testing excitation models of rapidly oscillating Ap stars with interferometry

    Full text link
    Rapidly oscillating Ap stars are unique objects in the potential they offer to study the interplay between a number of important physical phenomena, in particular, pulsations, magnetic fields, diffusion, and convection. Nevertheless, the simple understanding of how the observed pulsations are excited in these stars is still in progress. In this work we perform a test to what is possibly the most widely accepted excitation theory for this class of stellar pulsators. The test is based on the study of a subset of members of this class for which stringent data on the fundamental parameters are available thanks to interferometry. For three out of the four stars considered in this study, we find that linear, non-adiabatic models with envelope convection suppressed around the magnetic poles can reproduce well the frequency region where oscillations are observed. For the fourth star in our sample no agreement is found, indicating that a new excitation mechanism must be considered. For the three stars whose observed frequencies can be explained by the excitation models under discussion, we derive the minimum angular extent of the region where convection must be suppressed. Finally, we find that the frequency regions where modes are expected to be excited in these models is very sensitive to the stellar radius. This opens the interesting possibility of determining this quantity and related ones, such as the effective temperature or luminosity, from comparison between model predictions and observations, in other targets for which these parameters are not well determined.Comment: Accepted for publication in the MNRA

    Probing tiny convective cores with the acoustic modes of lowest degree

    Full text link
    Solar-like oscillations are expected to be excited in stars of up to about 1.6 solar masses. Most of these stars will have convective cores during their Main-sequence evolution. At the edges of these convective cores there is a rapid variation in the sound speed which influences the frequencies of acoustic oscillations. In this paper we build on earlier work by Cunha and Metcalfe, to investigate further the impact that these rapid structural variations have on different p-mode frequency combinations, involving modes of low degree. In particular, we adopt a different expression to describe the sound speed variation at the edge of the core, which we show to reproduce more closely the profiles derived from the equilibrium models. We analyse the impact of this change on the frequency perturbation derived for radial modes. Moreover, we consider three different small frequency separations involving, respectively, modes of degree l = 0, 1, 2, 3; l = 0, 1; and l = 0, 2, and show that they are all significantly affected by the sharp sound speed variation at the edge of the core. In particular, we confirm that the frequency derivative of the diagnostic tool that combines modes of degree up to 3 can potentially be used to infer directly the amplitude of the relative sound speed variation at the edge of the core. Concerning the other two diagnostic tools, we show that at high frequencies they can be up to a few microhertzs smaller than what would be expected in the absence of the rapid structural variation at the edge of the core. Also, we show that the absolute values of their frequency derivatives are significantly increased, in a manner that is strongly dependent on stellar age.Comment: 7 pages. submitted to A&

    Magnetic ordering in GaAlAs:Mn double well structure

    Full text link
    The magnetic order in the diluted magnetic semiconductor barrier of double AlAs/GaAs: Mn quantum well structures is investigated by Monte Carlo simulations. A confinement adapted RKKY mechanism is implemented for indirect exchange between Mn ions mediated by holes. It is shown that, depending on the barrier width and the hole concentration a ferromagnetic or a spin-glass order can be established.Comment: 3 figure

    P-248 Futility and utility of two-stage hepatectomy

    Get PDF
    Meeting abstract in the European-Society-for-Medical-Oncology (ESMO) 21st World Congress on Gastrointestinal Cancer.info:eu-repo/semantics/publishedVersio
    corecore