21,333 research outputs found
Asteroseismic Theory of Rapidly Oscillating Ap Stars
This paper reviews some of the important advances made over the last decade
concerning theory of roAp stars.Comment: 9 pages, 5 figure
Inhibition by ATP of hippocampal synaptic transmission requires localized extracellular catabolism by ecto-nucleotidases into adenosine and channeling to adenosine A1 receptors
© 1998 Society for NeuroscienceATP analogs substituted in the γ-phosphorus (ATPγS, β, γ-imido-ATP, and β, γ-methylene-ATP) were used to probe the involvement of P2 receptors in the modulation of synaptic transmission in the hippocampus, because their extracellular catabolism was virtually not detected in CA1 slices. ATP and γ-substituted analogs were equipotent to inhibit synaptic transmission in CA1 pyramid synapses (IC50 of 17–22 μM). The inhibitory effect of ATP and γ-phosphorus-substituted ATP analogs (30 μM) was not modified by the P2 receptor antagonist suramin (100 μM), was inhibited by 42–49% by the ecto-5’- nucleotidase inhibitor and α, β-methylene ADP (100 μM), was inhibited by 74–85% by 2 U/ml adenosine deaminase (which converts adenosine into its inactive metabolite-inosine), and was nearly prevented by the adenosine A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (10 nM). Stronger support for the involvement of extracellular adenosine formation as a main requirement for the inhibitory effect of ATP and γ-substituted ATP analogs was the observation that an inhibitor of adenosine uptake, dipyridamole (20 μM), potentiated by 92–124% the inhibitory effect of ATP and γ-substituted ATP analogs (10 μM), a potentiation similar to that obtained for 10 μM adenosine (113%). Thus, the present results indicate that inhibition by extracellular ATP of hippocampal synaptic transmission requires localized extracellular catabolism by ectonucleotidases and channeling of the generated adenosine to adenosine A1 receptors.This work was supported by Junta Nacional de Investigação Cientifica e Tecnológica,
Praxis XXI, Gulbenkian Foundation, and European Union (BIOMED 2 programme
On the nature of the spin-polarized hole states in a quasi-two-dimensional GaMnAs ferromagnetic layer
A self-consistent calculation of the density of states and the spectral
density function is performed in a two-dimensional spin-polarized hole system
based on a multiple-scattering approximation. Using parameters corresponding to
GaMnAs thin layers, a wide range of Mn concentrations and hole densities have
been explored to understand the nature, localized or extended, of the
spin-polarized holes at the Fermi level for several values of the average
magnetization of the Mn ystem. We show that, for a certain interval of Mn and
hole densities, an increase on the magnetic order of the Mn ions come together
with a change of the nature of the states at the Fermi level. This fact
provides a delocalization of spin-polarized extended states anti-aligned to the
average Mn magnetization, and a higher spin-polarization of the hole gas. These
results are consistent with the occurrence of ferromagnetism with relatively
high transition temperatures observed in some thin film samples and
multilayered structures of this material.Comment: 3 page
Magnetic ordering in GaAlAs:Mn double well structure
The magnetic order in the diluted magnetic semiconductor barrier of double
AlAs/GaAs: Mn quantum well structures is investigated by Monte Carlo
simulations. A confinement adapted RKKY mechanism is implemented for indirect
exchange between Mn ions mediated by holes. It is shown that, depending on the
barrier width and the hole concentration a ferromagnetic or a spin-glass order
can be established.Comment: 3 figure
A dynamical point of view of Quantum Information: entropy and pressure
Quantum Information is a new area of research which has been growing rapidly
since last decade. This topic is very close to potential applications to the so
called Quantum Computer. In our point of view it makes sense to develop a more
"dynamical point of view" of this theory. We want to consider the concepts of
entropy and pressure for "stationary systems" acting on density matrices which
generalize the usual ones in Ergodic Theory (in the sense of the Thermodynamic
Formalism of R. Bowen, Y. Sinai and D. Ruelle). We consider the operator
acting on density matrices over a finite
-dimensional complex Hilbert space where and , are
operators in this Hilbert space. is not a linear operator. In
some sense this operator is a version of an Iterated Function System (IFS).
Namely, the , , play the role of the
inverse branches (acting on the configuration space of density matrices )
and the play the role of the weights one can consider on the IFS. We
suppose that for all we have that . A
family determines a Quantum Iterated Function System
(QIFS) , $\mathcal{F}_W=\{\mathcal{M}_N,F_i,W_i\}_{i=1,...,
k}.
P-248 Futility and utility of two-stage hepatectomy
Meeting abstract in the European-Society-for-Medical-Oncology (ESMO) 21st World Congress on Gastrointestinal Cancer.info:eu-repo/semantics/publishedVersio
A dynamical point of view of Quantum Information: Wigner measures
We analyze a known version of the discrete Wigner function and some
connections with Quantum Iterated Funcion Systems. This paper is a follow up of
"A dynamical point of view of Quantum Information: entropy and pressure" by the
same authors
Asteroseismology and Magnetic Cycles
Small cyclic variations in the frequencies of acoustic modes are expected to
be a common phenomenon in solar-like pulsators, as a result of stellar magnetic
activity cycles. The frequency variations observed throughout the solar and
stellar cycles contain information about structural changes that take place
inside the stars as well as about variations in magnetic field structure and
intensity. The task of inferring and disentangling that information is,
however, not a trivial one. In the sun and solar-like pulsators, the direct
effect of the magnetic field on the oscillations might be significantly
important in regions of strong magnetic field (such as solar- / stellar-spots),
where the Lorentz force can be comparable to the gas-pressure gradient. Our aim
is to determine the sun- / stellar-spots effect on the oscillation frequencies
and attempt to understand if this effect contributes strongly to the frequency
changes observed along the magnetic cycle. The total contribution of the spots
to the frequency shifts results from a combination of direct and indirect
effects of the magnetic field on the oscillations. In this first work we
considered only the indirect effect associated with changes in the
stratification within the starspot. Based on the solution of the wave equation
and the variational principle we estimated the impact of these stratification
changes on the oscillation frequencies of global modes in the sun and found
that the induced frequency shifts are about two orders of magnitude smaller
than the frequency shifts observed over the solar cycle.Comment: 4 pages, 6 figures, ESF Conference: The Modern Era of Helio- and
Asteroseismology, to be published on 3 December 2012 at Astronomische
Nachrichten 333, No. 10, 1032-103
Melting of immiscible physical and compatibilized polymer blends in single screw extruders
Melting is a major step in plasticating single screw extrusion, but most of the existing phenomenological know how was gathered by performing Maddock-type experiments with homopolymers. Given the current widespread industrial use of polymer blends, it is worth determining whether the same mechanisms and mathematical models apply, or whether different sequences develop. This work reports the results of Maddock-type experiments using a PA6/PP blend, both in its immiscible and compatibilized varieties. A melting mechanism combining the features of the classical Tadmor mechanism and of the dispersed melting mechanism, also previously reported in the literature, was observed
- …