8 research outputs found

    Multiple phosphorus acquisition strategies adopted by fine roots in low-fertility soils in Central Amazonia

    Get PDF
    This is the final version. Available from Springer Verlag via the DOI in this record.Background and aims Ancient Amazon soils are characterised by low concentrations of soil phosphorus (P). Therefore, it is hypothesised that plants may invest a substantial proportion of their resources belowground to adjust their P-uptake strategies, including root morphological, physiological (phosphatase enzyme activities) and biotic (arbuscular mycorrhizal (AM) associations) adaptations. Since these strategies are energy demanding, we hypothesise that trade-offs between morphological traits and root phosphatase exudation and symbiotic associations would occur. Specifically, we expected that plants which invest in finer roots, and therefore have greater ability to explore large soil volumes, would have a high investment in physiological adaptations such as enhanced phosphatase production. In contrast, we expected that plants with predominantly thicker roots would invest more in symbiotic associations, in which carbon is traded for P acquired from AM fungal communities. Methods We collected absorptive roots (<2 mm diameter) from a lowland Central Amazon forest near Manaus, Brazil. We measured fine root diameter, specific root length (SRL), specific root area (SRA), root tissue density (RTD), root phosphatase activity (APase) and arbuscular mycorrhizal (AM) fungi colonisation. Results Root morphological traits were related to APase activity, with higher APase activity in roots with higher SRL and SRA but lower RTD. However, the degree of AM colonisation was not related to any measured root morphological trait. Conclusions Fine absorptive roots likely benefit from having low RTD, high SRL, SRA and APase exudation to acquire P efficiently. However, because AM colonisation was not related to root morphology, we suggest that investment in multiple P-uptake strategies is required for maintaining productivity in Central Amazon forests.Natural Environment Research Council (NERC)Brazilian National Council for Scientific and Technological Development (CNPq)Australian Research Counci

    Forensic age diagnostics by magnetic resonance imaging of the proximal humeral epiphysis

    Get PDF
    The most commonly used radiological method for age estimation of living individuals is X-ray. Computed tomography is not commonly used due to high radiation exposure, which raises ethical concerns. This problem can be solved with the use of magnetic resonance imaging (MRI), which avoids the use of ionizing radiation. The purpose of the present study was to evaluate the utility of MRI analysis of the proximal humeral epiphyses for forensic age estimations of living individuals. In this study, 395 left proximal humeral epiphyses (patient age 12-30years) were evaluated with fast-spin-echo proton density-weighted image (FSE PD) sequences in a coronal oblique orientation on shoulder MRI images. A five-stage scoring system was used following the method of Dedouit et al. The intra- and interobserver reliabilities assessed using Cohen's kappa statistic were =0.818 and =0.798, respectively. According to this study, stage five first appeared at 20 and 21years of age in males and females, respectively. These results are not directly comparable to any other published study due to the lack of MRI data on proximal humeral head development. These findings may provide valuable information for legally important age thresholds using shoulder MRI. The current study demonstrates that MRI of the proximal humerus can support forensic age estimation. Further research is needed to establish a standardized protocol that can be applied worldwide

    Rapid responses of root traits and productivity to phosphorus and cation additions in a tropical lowland forest in Amazonia

    No full text
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordSoil nutrient availability can strongly affect root traits. In tropical forests, phosphorus (P) is often considered the main limiting nutrient for plants. However, support for the P paradigm is limited, and N and cations might also control tropical forests functioning. We used a large-scale experiment to determine how the factorial addition of nitrogen (N), P and cations affected root productivity and traits related to nutrient acquisition strategies (morphological traits, phosphatase activity, arbuscular mycorrhizal colonisation and nutrient contents) in a primary rainforest growing on low-fertility soils in Central Amazonia after one year of fertilisation. Multiple root traits and productivity were affected. Phosphorus additions increased annual root productivity and root diameter, but decreased root phosphatase activity. Cation additions increased root productivity at certain times of year, also increasing root diameter and mycorrhizal colonisation. P and cation additions increased their element concentrations in root tissues. No responses were detected with N addition. Here we show that rock-derived nutrients determine root functioning in low-fertility Amazonian soils, demonstrating not only the hypothesised importance of P, but also highlighting the role of cations. The changes in fine root traits and productivity indicate that even slow-growing tropical rainforests can respond rapidly to changes in resource availability.Brazilian National Council for Scientific and 551 Technological Development (CNPq)Natural Environment Research Council (NERC)Australian Research Council (ARC)European Research Council (ERC

    Direct evidence for phosphorus limitation on Amazon forest productivity

    No full text
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordData availability: Data that support the findings of this study have been deposited in NERC Environmental Information Data Centre at https://doi.org/10.5285/b3a55011-bf46-40f5-8850-86dc8bc4c85d for root biomass, https://doi.org/10.5285/c2587e20-ba4a-4444-8ce9-ccdec15b0aa3 for tree census, https://doi.org/10.5285/c0294ec9-45d6-464c-b543-ce9ece9fd968 for litterfall production and https://doi.org/10.5285/6e70665f-b558-4949-b42a-49fbaec7e7cc for LAI. The Global Wood Density Database can be requested from https://doi.org/10.5061/dryad.234. Plot mean datasets for all response variables and AFEX plot treatment identifications are available at https://github.com/kmander7/Paper-AFEX-NPP.Code availability: The R code used to find the best model for each variable is available in the Supplementary Material. R scripts used to generate the Supplementary Material are available at https://github.com/kmander7/Paper-AFEX-NPPThe productivity of rainforests growing on highly weathered tropical soils is expected to be limited by phosphorus availability1. Yet, controlled fertilization experiments have been unable to demonstrate a dominant role for phosphorus in controlling tropical forest net primary productivity. Recent syntheses have demonstrated that responses to nitrogen addition are as large as to phosphorus2, and adaptations to low phosphorus availability appear to enable net primary productivity to be maintained across major soil phosphorus gradients3. Thus, the extent to which phosphorus availability limits tropical forest productivity is highly uncertain. The majority of the Amazonia, however, is characterized by soils that are more depleted in phosphorus than those in which most tropical fertilization experiments have taken place2. Thus, we established a phosphorus, nitrogen and base cation addition experiment in an old growth Amazon rainforest, with a low soil phosphorus content that is representative of approximately 60% of the Amazon basin. Here we show that net primary productivity increased exclusively with phosphorus addition. After 2 years, strong responses were observed in fine root (+29%) and canopy productivity (+19%), but not stem growth. The direct evidence of phosphorus limitation of net primary productivity suggests that phosphorus availability may restrict Amazon forest responses to CO2 fertilization4, with major implications for future carbon sequestration and forest resilience to climate change.Natural Environment Research Council (NERC)Brazilian National Council for Scientific and Technological Development (CNPq)AmazonFACE programmeCoordination for the Improvement of Higher Education Personnel (CAPES)National Institute of Amazonian ResearchFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Partnership for Enhanced Engagement in Research (PEER) programm
    corecore