1,864 research outputs found

    state of charge estimation of thermal storages for distributed generation systems

    Get PDF
    Abstract The aim of this work is the development of three different models to calculate the enthalpy content of a stratified water thermal storage tank from discrete temperature measurements. The difficulty related to enthalpy value evaluation comes from the discrete temperature measurement along the storage (often only 2 to 4 temperatures along the volume height are known): the actual temperature distribution between two subsequent probes is unknown. Three different models based on three different approaches were developed and compared, basing on experimental data. A first model calculates the enthalpy value considering the measured temperatures and the thermal power difference between generation and consumption. The second model uses a mathematical pre-defined temperature shape fitted considering real-time experimental data. The latter model is based on a 1-D physical approach using a multi-nodal method. All the models were validated against the experimental data obtained from the distributed generation laboratory installed in Savona, Italy

    Design of a Base-Board for arrays of closely-packed Multi-Anode Photo-Multipliers

    Full text link
    We describe the design of a Base-Board to house Multi-Anode Photo-Multipliers for use in large-area arrays of light sensors. The goals, the design, the results of tests on the prototypes and future developments are presented.Comment: 16 pages, 5 figures, submitted to Nucl. Instrum. and Meth.

    ARM-Cortex M3-Based Two-Wheel Robot for Assessing Grid Cell Model of Medial Entorhinal Cortex: Progress towards Building Robots with Biologically Inspired Navigation-Cognitive Maps

    Get PDF
    This article presents the implementation and use of a two-wheel autonomous robot and its effectiveness as a tool for studying the recently discovered use of grid cells as part of mammalian’s brains space-mapping circuitry (specifically the medial entorhinal cortex). A proposed discrete-time algorithm that emulates the medial entorhinal cortex is programed into the robot. The robot freely explores a limited laboratory area in the manner of a rat or mouse and reports information to a PC, thus enabling research without the use of live individuals. Position coordinate neural maps are achieved as mathematically predicted although for a reduced number of implemented neurons (i.e., 200 neurons). However, this type of computational embedded system (robot’s microcontroller) is found to be insufficient for simulating huge numbers of neurons in real time (as in the medial entorhinal cortex). It is considered that the results of this work provide an insight into achieving an enhanced embedded systems design for emulating and understanding mathematical neural network models to be used as biologically inspired navigation system for robots

    Azimuthal clumping instabilities in a ZZ-pinch wire array

    Full text link
    A simple model is constructed to evaluate the temporal evolution of azimuthal clumping instabilities in a cylindrical array of current-carrying wires. An analytic scaling law is derived, which shows that randomly seeded perturbations evolve at the rate of the fastest unstable mode, almost from the start. This instability is entirely analogous to the Jeans instability in a self-gravitating disk, where the mutual attraction of gravity is replaced by the mutual attraction among the current-carrying wires.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87765/2/052701_1.pd

    Microwave apparatus for gravitational waves observation

    Full text link
    In this report the theoretical and experimental activities for the development of superconducting microwave cavities for the detection of gravitational waves are presented.Comment: 42 pages, 28 figure

    Caterpillar structures in single-wire Z-pinch experiments

    Full text link
    A series of experiments have been performed on single-wire Z pinches (1–2 kA, 20 kV, pulse length 500 ns; Al, Ag, W, or Cu wire of diameter 7.5–50 μm, length 2.5 cm). Excimer laser absorption photographs show expansion of metallic plasmas on a time scale of order 100 ns. The edge of this plasma plume begins to develop structures resembling a caterpillar only after the current pulse reaches its peak value. The growth of these caterpillar structures is shown to be consistent with the Rayleigh–Taylor instability of the decelerating plasma plume front at the later stage of the current pulse. © 2003 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71205/2/APPLAB-83-24-4915-1.pd
    • …
    corecore