15,887 research outputs found
On the evolution of non-axisymmetric viscous fibres with surface tension, inertia and gravity
We consider the free boundary problem for the evolution of a nearly straight slender fibre of viscous fluid. The motion is driven by prescribing the velocity of the ends of the fibre, and the free surface evolves under the action of surface tension, inertia and gravity. The three-dimensional Navier-Stokes equations and free-surface boundary conditions are analysed asymptotically, using the fact that the inverse aspect ratio, defined to be the ratio between a typical fibre radius and the initial fibre length, is small. This first part of the paper follows earlier work on the stretching of a slender viscous fibre with negligible surface tension effects. The inclusion of surface tension seriously complicates the problem for the evolution of the shape of the cross-section. We adapt ideas applied previously to two-dimensional Stokes flow to show that the shape of the cross-section can be described by means of a conformal map which depends on time and distance along the fibre axis. We give some examples of suitable relevant maps and present numerical solutions of the resulting equations. We also use analytic methods to examine the coupling between stretching and the evolution of the cross-section shape
Ultracold neutral plasma expansion in two dimensions
We extend an isothermal thermal model of ultracold neutral plasma expansion
to systems without spherical symmetry, and use this model to interpret new
fluorescence measurements on these plasmas. By assuming a self-similar
expansion, it is possible to solve the fluid equations analytically and to
include velocity effects to predict the fluorescence signals. In spite of the
simplicity of this approach, the model reproduces the major features of the
experimental data
Modelling crystal aggregation and deposition\ud in the catheterised lower urinary tract
Urethral catheters often become encrusted with crystals of magnesium struvite and calcium phosphate. The encrustation can block the catheter, which can cause urine retention in the bladder and reflux into the kidneys. We develop a mathematical model to investigate crystal deposition on the catheter surface, modelling the bladder as a reservoir of fluid and the urethral catheter as a rigid channel. At a constant rate, fluid containing crystal particles of unit size enters the reservoir, and flows from the reservoir through the channel and out of the system. The crystal particles aggregate, which we model using Becker–Döring coagulation theory, and are advected through the channel, where they continue to aggregate and are deposited on the channel’s walls. Inhibitor particles also enter the reservoir, and can bind to the crystals, preventing further aggregation and deposition. The crystal concentrations are spatially homogeneous in the reservoir, whereas the channel concentrations vary spatially as a result of advection, diffusion and deposition. We investigate the effect of inhibitor particles on the amount of deposition. For all parameter values, we find that crystals deposit along the full length of the channel, with maximum deposition close to the channel’s entrance
White Dwarf Cosmochronology in the Solar Neighborhood
The study of the stellar formation history in the solar neighborhood is a
powerful technique to recover information about the early stages and evolution
of the Milky Way. We present a new method which consists of directly probing
the formation history from the nearby stellar remnants. We rely on the volume
complete sample of white dwarfs within 20 pc, where accurate cooling ages and
masses have been determined. The well characterized initial-final mass relation
is employed in order to recover the initial masses (1 < M/Msun < 8) and total
ages for the local degenerate sample. We correct for moderate biases that are
necessary to transform our results to a global stellar formation rate, which
can be compared to similar studies based on the properties of main-sequence
stars in the solar neighborhood. Our method provides precise formation rates
for all ages except in very recent times, and the results suggest an enhanced
formation rate for the solar neighborhood in the last 5 Gyr compared to the
range 5 < Age (Gyr) < 10. Furthermore, the observed total age of ~10 Gyr for
the oldest white dwarfs in the local sample is consistent with the early
seminal studies that have determined the age of the Galactic disk from stellar
remnants. The main shortcoming of our study is the small size of the local
white dwarf sample. However, the presented technique can be applied to larger
samples in the future.Comment: 25 pages, 10 figures, accepted for publication in the Astrophysical
Journa
Study of low frequency hydromagnetic waves using ATS-1 data
Low frequency oscillations of the magnetic field at ATS-1 were analyzed for the 25 month data interval, Dec., 1966 through 1968. Irregular oscillations and those associated with magnetic storms were excluded from the analysis. Of the 222 events identified, 170 were found to be oscillating predominantly transverse to the background magnetic field. The oscillations were observed to occur most frequently in the early afternoon hours. They also seemed to occur more frequently during Dec., Jan., and Feb. than at any other time of the year. During a given event, the frequency was fairly constant. The event duration varied between a minimum of 10 min. and a maximum of 14 hrs and 26 min. During a given event the amplitude varied
Concepts and procedures used to determine certain sea wave characteristics
A technique and its application are presented by which wave parameters, critical to spacecraft water impact load analysis, may be determined
The Feeling of Color: A Haptic Feedback Device for the Visually Disabled
Tapson J, Gurari N, Diaz J, et al. The Feeling of Color: A Haptic Feedback Device for the Visually Disabled. Presented at the Biomedical Circuits and Systems Conference (BIOCAS), Baltimore, MD.We describe a sensory augmentation system designed to provide the visually disabled with a sense of color. Our system consists of a glove with short-range optical color sensors mounted on its fingertips, and a torso-worn belt on which tactors (haptic feedback actuators) are mounted. Each fingertip sensor detects the observed objectpsilas color. This information is encoded to the tactor through vibrations in respective locations and varying modulations. Early results suggest that detection of primary colors is possible with near 100% accuracy and moderate latency, with a minimum amount of training
Dispersal Dynamics in a Wind-Driven Benthic System
Bedload and water column traps were used with simultaneous wind and water velocity measurements to study postlarval macrofaunal dispersal dynamics in Manukau Harbour, New Zealand. A 12-fold range in mean wind condition resulted in large differences in water flow (12-fold), sediment flux (285-fold), and trap collection of total number of individuals (95-fold), number of the dominant infaunal organism (84-fold for the bivalve Macomona liliana), and number of species (4-fold). There were very strong, positive relationships among wind condition, water velocity, sediment flux, and postlarval dispersal, especially in the bedload. Local density in the ambient sediment was not a good predictor of dispersal. Results indicate that postlarval dispersal may influence benthic abundance pat- terns over a range of spatial scales
Fluorescence measurements of expanding strongly-coupled neutral plasmas
We report new detailed density profile measurements in expanding
strongly-coupled neutral plasmas. Using laser-induced fluorescence techniques,
we determine plasma densities in the range of 10^5 to 10^9/cm^3 with a time
resolution limit as small as 7 ns. Strong-coupling in the plasma ions is
inferred directly from the fluorescence signals. Evidence for strong-coupling
at late times is presented, confirming a recent theoretical result.Comment: submitted to PR
- …