815 research outputs found

    Impact of fecal microbiota transplantation on gut bacterial bile acid metabolism in humans

    Get PDF
    Fecal microbiota transplantation (FMT) is a promising therapeutic modality for the treatment and prevention of metabolic disease. We previously conducted a double-blind, randomized, placebo-controlled pilot trial of FMT in obese metabolically healthy patients in which we found that FMT enhanced gut bacterial bile acid metabolism and delayed the development of impaired glucose tolerance relative to the placebo control group. Therefore, we conducted a secondary analysis of fecal samples collected from these patients to assess the potential gut microbial species contributing to the effect of FMT to improve metabolic health and increase gut bacterial bile acid metabolism. Fecal samples collected at baseline and after 4 weeks of FMT or placebo treatment underwent shotgun metagenomic analysis. Ultra-high-performance liquid chromatography-mass spectrometry was used to profile fecal bile acids. FMT-enriched bacteria that have been implicated in gut bile acid metabolism included Desulfovibrio fairfieldensis and Clostridium hylemonae. To identify candidate bacteria involved in gut microbial bile acid metabolism, we assessed correlations between bacterial species abundance and bile acid profile, with a focus on bile acid products of gut bacterial metabolism. Bacteroides ovatus and Phocaeicola dorei were positively correlated with unconjugated bile acids. Bifidobacterium adolescentis, Collinsella aerofaciens, and Faecalibacterium prausnitzii were positively correlated with secondary bile acids. Together, these data identify several candidate bacteria that may contribute to the metabolic benefits of FMT and gut bacterial bile acid metabolism that requires further functional validation

    Fructose transport-deficient Staphylococcus aureus reveals important role of epithelial glucose transporters in limiting sugar-driven bacterial growth in airway surface liquid.

    Get PDF
    Hyperglycaemia as a result of diabetes mellitus or acute illness is associated with increased susceptibility to respiratory infection with Staphylococcus aureus. Hyperglycaemia increases the concentration of glucose in airway surface liquid (ASL) and promotes the growth of S. aureus in vitro and in vivo. Whether elevation of other sugars in the blood, such as fructose, also results in increased concentrations in ASL is unknown and whether sugars in ASL are directly utilised by S. aureus for growth has not been investigated. We obtained mutant S. aureus JE2 strains with transposon disrupted sugar transport genes. NE768(fruA) exhibited restricted growth in 10 mM fructose. In H441 airway epithelial-bacterial co-culture, elevation of basolateral sugar concentration (5-20 mM) increased the apical growth of JE2. However, sugar-induced growth of NE768(fruA) was significantly less when basolateral fructose rather than glucose was elevated. This is the first experimental evidence to show that S. aureus directly utilises sugars present in the ASL for growth. Interestingly, JE2 growth was promoted less by glucose than fructose. Net transepithelial flux of D-glucose was lower than D-fructose. However, uptake of D-glucose was higher than D-fructose across both apical and basolateral membranes consistent with the presence of GLUT1/10 in the airway epithelium. Therefore, we propose that the preferential uptake of glucose (compared to fructose) limits its accumulation in ASL. Pre-treatment with metformin increased transepithelial resistance and reduced the sugar-dependent growth of S. aureus. Thus, epithelial paracellular permeability and glucose transport mechanisms are vital to maintain low glucose concentration in ASL and limit bacterial nutrient sources as a defence against infection

    Clinical report of cervical arthroplasty in management of spondylotic myelopathy in Chinese

    Get PDF
    OBJECTIVES: To investigate clinical effects and manual operational point of Bryan cervical disc prosthesis in Chinese, to observe the stability and range of movement (ROM) post-operatively. METHODS AND MATERIALS: From 2003,12 to 2005,12, Bryan disc prosthesis replacement applied in 83 cases (102 levels) of cervical spondylotic myelopathy (CSM) after anterior decompression in our hospital. Clinical (JOA grade and Odom's scale) and radiological (X-ray of flexion, extension; left and right bending position) follow-up was performed. Systemic radiographic study about stability and ROM of replaced level post operationally were measured. CT or MRI scans were applied in all cases to evaluate the signs of the prosthesis deflexion and hetero-ossification in the replaced levels. RESULTS: At least 12 months follow-up were done in 65/83 of these paients. All of 83 patients were improved according to Odsm's scale. JOA score increased from average 8.7 to 15.5. There was no prosthesis subsidence. Replaced segment achieved stability and restored partial of normal ROM 4.73°(3.7°–5.9°) early postoperation and 8.12°(5.8°–13.6°) more than 12 months postoperation in flex and extension position. No obvious loss of lordosis was found. CT or MRI follow-up shows position deflexion of the prosthesis metal endplates (<1.5 mm) in 14/77 levels and (1.5~3 mm) in 4/77. heter-ossification was found in the replaced levels only in 2 cases. CONCLUSION: Byran cervical disc prosthesis restored motion to the level of the intact segment in flexion-extension and lateral bending in post-operative images. At the same time, it can achieve good anterior decompression treatment effect and immediate stability in replaced 1 or 2 levels, and which is a new choice for the treatment of CSM

    Targeted antitumour therapy – future perspectives

    Get PDF
    The advent of targeted therapy presents an unprecedented opportunity for advances in the treatment of cancer. A key challenge will be to translate the undoubted promise of targeted agents into tangible clinical benefits. Achieving this goal is likely to be dependent upon a number of factors. These include continued research to improve our understanding of the heterogeneity and complexity of the tumour microenvironment; refinement of clinical trial design to incorporate nontraditional end points such as the optimum biological dose and health-related quality of life; and the use of technological advancements in proteomics, genomics and biomarker development to better predict tumour types and patient subsets that may be particularly responsive to treatment, as well as enable a more accurate assessment of drug effect at the molecular level. In summary, the future success of targeted agents will require an integrated multidisciplinary approach involving all stakeholders

    Bone mineral density and fractures in older men with chronic obstructive pulmonary disease or asthma

    Get PDF
    In 5,541 community dwelling men, chronic obstructive pulmonary disease, or asthma was associated with lower bone mineral density (BMD) at the spine and total hip and an increased risk of vertebral and nonvertebral fractures independent of age, body mass index, and smoking. Men prescribed with corticosteroids had the lowest BMD. It is unclear whether chronic obstructive pulmonary disease (COPD) is independently associated with BMD and fractures. In 5,541 men from the Osteoporotic Fractures in Men Study, history of COPD or asthma, current treatment with corticosteroids, BMD, bone loss after 4.5 years and fractures were ascertained. Seven hundred fourteen (13%) men reported COPD or asthma, of which 103 were prescribed an oral steroid and 177 an inhaled steroid. Independent of confounders, men prescribed corticosteroids for COPD or asthma had the lowest BMD and a 2-fold increased risk of vertebral osteoporosis compared to men with no history of COPD or asthma (OR 2.13, 95% CI (confidence interval) 1.15–3.93 oral steroids; OR 2.05, 95% CI 1.27–3.31 inhaled steroids). During follow-up, BMD increased at the spine, but there was no difference in bone loss at the hip. However, men with COPD or asthma had a 2.6- and 1.4-fold increased risk of vertebral and nonvertebral fractures, respectively. Chronic obstructive pulmonary disease or asthma was associated with lower BMD at the spine and hip and increased risk of vertebral and nonvertebral fractures independent of age, clinic site, BMI, and smoking. A history of COPD or asthma may be a useful clinical risk factor to identify patients with osteoporosis

    Who Sets the Agenda? Analyzing Key Actors and Dynamics of Economic Diversification in Kazakhstan Throughout 2011–2016

    Get PDF
    This contribution attempts to answer the key question: Who sets the agenda for economic diversification in the context of Kazakhstan? This question remains critical in current scholarly debates. Although Kazakhstan, a young post-Soviet developing nation, has received fair scholarly attention with regard to the agenda setting stage of the policy cycle, the existing literature has yet failed to (1) empirically establish who actually sets the agenda for a certain policy issue and (2) employ the Internet research methods. This paper seeks to fill these gaps. The literature review of Kazakh-specific agenda setting publications suggests that among the major actors, the government tends to exert predominant influence, though other actors may also play a role, for example, media and academia. This research is driven by Internet penetration rate data and focuses on the period from January 2011 until December 2016. The findings lead to two key conclusions. First, think tanks seem to set the government agenda for economic diversification policy in Kazakhstan. Second, the government, while exhibiting the larger agenda setting magnitude vis-à-vis the other actors, shapes the subsequent debates as measured by the number of relevant references in media, think tanks, and academic publications. This research seeks to contribute to existing agenda setting theories in the Internet era by defining the most important actor(s), specifically in the Kazakh context based on longitudinal dynamics in attention

    Hyperon Photoproduction in the Nucleon Resonance Region

    Full text link
    Cross-sections and recoil polarizations for the reactions gamma + p --> K^+ + Lambda and gamma + p --> K^+ + Sigma^0 have been measured with high statistics and with good angular coverage for center-of-mass energies between 1.6 and 2.3 GeV. In the K^+Lambda channel we confirm a structure near W=1.9 GeV at backward kaon angles, but our data shows a more complex s- and u- channel resonance structure than previously seen. This structure is present at forward and backward angles but not central angles, and its position and width change with angle, indicating that more than one resonance is playing a role. Rising back-angle cross sections at higher energies and large positive polarization at backward angles are consistent with sizable s- or u-channel contributions. None of the model calculations we present can consistently explain these aspects of the data.Comment: 5 pages, 3 figures, submitted to Physical Review Letter

    Biophysical Characterization and Membrane Interaction of the Two Fusion Loops of Glycoprotein B from Herpes Simplex Type I Virus

    Get PDF
    The molecular mechanism of entry of herpesviruses requires a multicomponent fusion system. Cell invasion by Herpes simplex virus (HSV) requires four virally encoded glycoproteins: namely gD, gB and gH/gL. The role of gB has remained elusive until recently when the crystal structure of HSV-1 gB became available and the fusion potential of gB was clearly demonstrated. Although much information on gB structure/function relationship has been gathered in recent years, the elucidation of the nature of the fine interactions between gB fusion loops and the membrane bilayer may help to understand the precise molecular mechanism behind herpesvirus-host cell membrane fusion. Here, we report the first biophysical study on the two fusion peptides of gB, with a particular focus on the effects determined by both peptides on lipid bilayers of various compositions. The two fusion loops constitute a structural subdomain wherein key hydrophobic amino acids form a ridge that is supported on both sides by charged residues. When used together the two fusion loops have the ability to significantly destabilize the target membrane bilayer, notwithstanding their low bilayer penetration when used separately. These data support the model of gB fusion loops insertion into cholesterol enriched membranes

    First Measurement of Beam-Recoil Observables Cx and Cz in Hyperon Photoproduction

    Full text link
    Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions γ+pK++Λ\vec\gamma + p \to K^+ + \vec\Lambda and γ+pK++Σ0\vec\gamma + p \to K^+ + \vec\Sigma^0. The data were obtained using the CLAS detector at Jefferson Lab for center-of-mass energies WW between 1.6 and 2.53 GeV, and for 0.85<cosθK+c.m.<+0.95-0.85<\cos\theta_{K^+}^{c.m.}< +0.95. For the Λ\Lambda, the polarization transfer coefficient along the photon momentum axis, CzC_z, was found to be near unity for a wide range of energy and kaon production angles. The associated transverse polarization coefficient, CxC_x, is smaller than CzC_z by a roughly constant difference of unity. Most significantly, the {\it total} Λ\Lambda polarization vector, including the induced polarization PP, has magnitude consistent with unity at all measured energies and production angles when the beam is fully polarized. For the Σ0\Sigma^0 this simple phenomenology does not hold. All existing hadrodynamic models are in poor agreement with these results.Comment: 28 pages, 18 figures, Submitted to Physical Review
    corecore