1,033 research outputs found

    Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters

    Get PDF
    Multi-spectral imaging systems typically require the cumbersome integration of disparate filtering materials in order to work simultaneously in multiple spectral regions. We show for the first time how a single nano-patterned metal film can be used to filter multi-spectral content from the visible, near infrared and terahertz bands by hybridizing plasmonics and metamaterials. Plasmonic structures are well-suited to the visible band owing to the resonant dielectric properties of metals, whereas metamaterials are preferable at terahertz frequencies where metal conductivity is high. We present the simulated and experimental characteristics of our new hybrid synthetic multi-spectral material filters and demonstrate the independence of the metamaterial and plasmonic responses with respect to each other

    CMOS Terahertz Metamaterial Based 64 Ɨ 64 Bolometric Detector Arrays

    Get PDF
    We present two terahertz detectors composed of microbolometer sensors (vanadium oxide and silicon pn diode) and metamaterial absorbers monolithically integrated into a complementary metal oxide semiconductor (CMOS) process. The metamaterial absorbers were created using the metal-dielectric-metal layers of a commercial CMOS technology resulting in low-cost terahertz detectors. The scalability of this technology was used to form a 64 Ɨ 64 pixel terahertz focal plane array

    Recent Progress in Plasmonic Colour Filters for Image Sensor and Multispectral Applications

    Get PDF
    Using nanostructured thin metal films as colour filters offers several important advantages, in particular high tunability across the entire visible spectrum and some of the infrared region, and also compatibility with conventional CMOS processes. Since 2003, the field of plasmonic colour filters has evolved rapidly and several different designs and materials, or combination of materials, have been proposed and studied. In this paper we present a simulation study for a single- step lithographically patterned multilayer structure able to provide competitive transmission efficiencies above 40% and contemporary FWHM of the order of 30 nm across the visible spectrum. The total thickness of the proposed filters is less than 200 nm and is constant for every wavelength, unlike e.g. resonant cavity-based filters such as Fabry-Perot that require a variable stack of several layers according to the working frequency, and their passband characteristics are entirely controlled by changing the lithographic pattern. It will also be shown that a key to obtaining narrow-band optical response lies in the dielectric environment of a nanostructure and that it is not necessary to have a symmetric structure to ensure good coupling between the SPPs at the top and bottom interfaces. Moreover, an analytical method to evaluate the periodicity, given a specific structure and a desirable working wavelength, will be proposed and its accuracy demonstrated. This method conveniently eliminate the need to optimize the design of a filter numerically, i.e. by running several time-consuming simulations with different periodicities. Ā© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Exploring Online Health Information Seeking in Scotland

    Get PDF
    Online Health Information Seeking (OHIS) has become an area of increasing interest over the last decade. The Internet has enabled the democratisation of health information as knowledge which was previously exclusive to health professionals has now become open access for all. The activity of OHIS has also revealed a digital divide in terms of those who access the Internet for health information. The prevalence of OHIS and the impact it has on patient outcomes and the relationship between health professional and patient is the focus of an on-going body of research outlined in this paper

    CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications

    Get PDF
    We experimentally demonstrate a CMOS compatible medium wave infrared metal-insulator-metal (MIM) metamaterial absorber structure where for a single dielectric spacer thickness at least 93% absorption is attained for 10 separate bands centred at 3.08, 3.30, 3.53, 3.78, 4.14, 4.40, 4.72, 4.94, 5.33, 5.60 Ī¼m. Previous hyperspectral MIM metamaterial absorber designs required that the thickness of the dielectric spacer layer be adjusted in order to attain selective unity absorption across the band of interest thereby increasing complexity and cost. We show that the absorption characteristics of the hyperspectral metamaterial structures are polarization insensitive and invariant for oblique incident angles up to 25Ā° making them suitable for practical implementation in an imaging system. Finally, we also reveal that under TM illumination and at certain oblique incident angles there is an extremely narrowband Fano resonance (Q < 50) between the MIM absorber mode and the surface plasmon polariton mode that could have applications in hazardous/toxic gas identification and biosensing

    Qualitative website analysis of information on birth after caesarean section

    Get PDF
    Date of Acceptance: 10/08/2015 Ā© 2015 Peddie et al.Peer reviewedPublisher PD

    Terahertz single pixel imaging based on a Nipkow disk

    Get PDF
    We describe a terahertz single pixel imaging system based on a Nipkow disk. Nipkow disks have been used for fast scanning imaging systems since the first experimental television was invented in 1926. In our work, a Nipkow disk with 24 scanning lines was used to provide an axial resolution of 2 mm/pixel. We also show that by implementing a microscanning technique the axial resolution can be further improved to 0.5 mm/pixel. Imaging of several objects was demonstrated to show that this simple scanning system is promising for fast and/or real time terahertz imaging applications

    Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers

    Get PDF
    Synthetic fractals inherently carry spatially encoded frequency information that renders them as an ideal candidate for broadband optical structures. Nowhere is this more true than in the terahertz (THz) band where there is a lack of naturally occurring materials with valuable optical properties. One example are perfect absorbers that are a direct step toward the development of highly sought after detectors and sensing devices. Metasurface absorbers that can be used to substitute for natural materials suffer from poor broadband performance, while those with high absorption and broadband capability typically involve complex fabrication and design and are multilayered. Here, we demonstrate a polarization-insensitive ultrathin (āˆ¼Ī»/6) planar metasurface THz absorber composed of supercells of fractal crosses capable of spanning one optical octave in bandwidth, while still being highly efficient. A sufficiently thick polyimide interlayer produces a unique absorption mechanism based on Salisbury screen and antireflection responses, which lends to the broadband operation. Experimental peak absorption exceeds 93%, while the average absorption is 83% from 2.82 THz to 5.15 THz. This new ultrathin device architecture, achieving an absorption-bandwidth of one optical octave, demonstrates a major advance toward a synthetic metasurface blackbody absorber in the THz ban

    A 16 x 16 CMOS amperometric microelectrode array for simultaneous electrochemical measurements

    Get PDF
    There is a requirement for an electrochemical sensor technology capable of making multivariate measurements in environmental, healthcare, and manufacturing applications. Here, we present a new device that is highly parallelized with an excellent bandwidth. For the first time, electrochemical cross-talk for a chip-based sensor is defined and characterized. The new CMOS electrochemical sensor chip is capable of simultaneously taking multiple, independent electroanalytical measurements. The chip is structured as an electrochemical cell microarray, comprised of a microelectrode array connected to embedded self-contained potentiostats. Speed and sensitivity are essential in dynamic variable electrochemical systems. Owing to the parallel function of the system, rapid data collection is possible while maintaining an appropriately low-scan rate. By performing multiple, simultaneous cyclic voltammetry scans in each of the electrochemical cells on the chip surface, we are able to show (with a cell-to-cell pitch of 456 Ī¼m) that the signal cross-talk is only 12% between nearest neighbors in a ferrocene rich solution. The system opens up the possibility to use multiple independently controlled electrochemical sensors on a single chip for applications in DNA sensing, medical diagnostics, environmental sensing, the food industry, neuronal sensing, and drug discovery

    Exploitation of magnetic dipole resonances in metalā€“insulatorā€“metal plasmonic nanostructures to selectively filter visible light

    Get PDF
    Significant improvement in using plasmonic nanostructures for practical color filtering and multispectral imaging applications is achieved by exploiting the coupling of surface plasmons with dielectric optical cavity resonances within a hexagonal array of subwavelength holes in a thin CMOS-compatible metalā€“insulatorā€“metal stack. This polarization-independent architecture overcomes the limitations of all previously reported plasmonic color filters, namely poor transmission and broad band-pass characteristic, effectively providing a compact approach for high color accuracy multispectral and filtering technologies. Measured transmission efficiencies up to 60% and full-width at half-maximum between 45 and 55 nm along the entire visible spectrum are achieved, an impressive and unique combination of features that has never been reported before. The nanostructure exploits the phenomenon of extraordinary optical transmission and magnetic dipole modes to efficiently filter visible light. The presence of magnetic resonances in the optical regime is an unusual property, previously reported in photonic metamaterials or dielectric nanoparticles. The physical insights established from the electromagnetic near-field patterns are used to accurately tailor the optical properties of the filters. The nonideality of the fabrication at the nanoscale is addressed, the issues encountered highlighted, and alternative solutions proposed and verified, demonstrating that the working principle of the MIM structure can be successfully extended to other materials and structural parameters
    • ā€¦
    corecore