42 research outputs found

    The Impact of Professional Development on Trauma-Informed Practices (TIPs) in a Teacher\u27s Feeling of Self-Efficacy

    Get PDF
    The purpose of this quantitative, quasi-experimental, static-group comparison design study was to determine the increase or decrease of self-efficacy for elementary and secondary teachers regarding instructional strategies, student engagement, and classroom management after professional development in TIPs. TIPs in the school setting provide comprehensive interventions to address childhood trauma that could promote positive academic progress. There has been little research provided on the impact of TIPs regarding instructional strategies, student engagement, and classroom management as it relates to teacher-efficacy. The results of this study found significant differences in survey responses from teachers in two school districts. The Teachers’ Sense of Efficacy Scale (TSES) was utilized to collect data on teacher’s sense of self- efficacy from 100 teachers in two urban school districts in Mississippi. According to the results of three independent t tests, there is an indication that TIPs may impact teacher self-efficacy. Teachers do not receive appropriate training at the university level to overcome the effects of trauma in the classroom setting; therefore, professional development in TIPs should be implemented at the school level. The researcher recommends further research into the role of TIPs at improving social-emotional learning of students and increasing teacher self-efficacy

    Oligo-Miocene extensional tectonics and fluid flow across the Northern Snake Range detachment system, Nevada

    Get PDF
    The Northern Snake Range (Nevada) represents a spectacular example of a metamorphic core complex and exposes a complete section from the mylonitic footwall into the hanging wall of a fossil detachment system. Paired geochronological and stable isotopic data of mylonitic quartzite within the detachment footwall reveal that ductile deformation and infiltration of meteoric fluids occurred between 27 and 23 Ma. 40Ar/39Ar ages display complex recrystallization-cooling relationships but decrease systematically from 26.9 ± 0.2 Ma at the top to 21.3 ± 0.2 Ma at the bottom of footwall mylonite. Hydrogen isotope (δD) values in white mica are very low (-150 to-145 ‰) within the top 80-90 m of detachment footwall, in contrast to values obtained from the deeper part of the section where values range from-77 to-64 ‰, suggesting that time-integrated interaction between rock and meteoric fluid was restricted to the uppermost part of the mylonitic footwall. Pervasive mica-water hydrogen isotope exchange is difficult to reconcile with models of 40Ar loss during mylonitization solely by volume diffusion. Rather, we interpret the 40Ar/ 39Ar ages of white mica with low-δD values to date syn-mylonitic hydrogen and argon isotope exchange, and we conclude that the hydrothermal system of the Northern Snake Range was active during late Oligocene (27-23 Ma) and has been exhumed by the combined effects of ductile strain, extensional detachment faulting, and erosion. Copyright 2011 by the American Geophysical Union

    Argon redistribution during a metamorphic cycle: Consequences for determining cooling rates

    Get PDF
    40Ar/39Ar thermochronology is commonly used to constrain the rates and times of cooling in exhumed metamorphic terranes, with ages usually linked to temperature via Dodson's closure temperature (TC) formulation. Whilst many metamorphic 40Ar/39Ar data are consistent with the timing of crystallisation or cooling within a chronological framework defined by other, higher temperature, chronometers, other 40Ar/39Ar data are more difficult to interpret. We report white mica and biotite single grain fusion and laser ablation 40Ar/39Ar ages from felsic gneisses from the Western Gneiss Region, Norway. The rocks record isothermal decompression from peak eclogite-facies conditions (white mica stable) to amphibolite-facies conditions (biotite stable) at c. 700 °C. White mica and biotite yield dispersed single grain fusion dates from 416 to 373 Ma and 437 to 360 Ma respectively. In-situ laser ablation analyses provide a similar range, with white mica spot ages ranging from 424 to 370 Ma and biotite spot ages ranging from 437 to 370 Ma. The dates span the duration of the metamorphic cycle suggested by previous studies, and cannot be reconciled with the results of simple models of Ar loss by diffusion during cooling. Samples that show evidence for different physical processes, such as the chemical breakdown of white mica, partial melting, and fluid ingress, generated different age populations to samples that did not experience or record obvious petrological evidence for these processes. Samples that record significant recrystallization and deformation yielded younger white mica (but older biotite) single grain fusion ages than more pristine samples. Amphibolite-facies gneisses that preserve evidence for significant partial melting generated younger biotite ages than samples that recorded evidence for significant hydration. Our data support other reported observations that high-temperature metamorphic mica 40Ar/39Ar dates cannot be assumed to record the timing of cooling through a specific temperature window. Careful assessment of the petrographic context of the dated minerals and consideration of their post-crystallisation history may provide a more robust insight into whether ‘age’ links to ‘stage’ in a temporally meaningful way
    corecore