33 research outputs found

    NPT088 reduces both amyloid-b and tau pathologies in transgenic mice

    Get PDF
    Introduction: Alzheimer’s disease (AD) is characterized by appearance of both extracellular senile plaques and intracellular neurofibrillary tangles, comprised of aggregates of misfolded amyloid-b (Ab) and hyper-phosphorylated tau, respectively. In a previous study, we demonstrated that g3p, a capsid protein from bacteriophage M13, binds to and remodels misfolded aggregates of proteins that assume an amyloid conformation. We engineered a fusion protein (“NPT088”) consisting of the active fragment of g3p and human-IgG1-Fc. Methods: Aged Tg2576 mice or rTg4510 mice received NPT088 weekly via IP injection. Cognitive and/or functional motor endpoints were monitored during dosing. Pathology was quantified biochemically and immunohistochemically. Results: NPT088-lowered Ab plaque and improved cognitive performance of aged Tg2576 mice. Moreover, NPT088 reduced phospho-tau pathology, reduced brain atrophy, and improved cognition in rTg4510 mice. Discussion: These observations establish NPT088 as a novel therapeutic approach and potential drug class that targets both Ab and tau, the hallmark pathologies of AD

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    False negatives in GBA1 sequencing due to polymerase dependent allelic imbalance

    No full text
    A variant in the GBA1 gene is one of the most common genetic risk factors to develop Parkinson’s disease (PD). Here the serendipitous finding is reported of a polymerase dependent allelic imbalance when using next generation sequencing, potentially resulting in false-negative results when the allele frequency falls below the variant calling threshold (by default commonly at 30%). The full GBA1 gene was sequenced using next generation sequencing on saliva derived DNA from PD patients. Four polymerase chain reaction conditions were varied in twelve samples, to investigate the effect on allelic imbalance: (1) the primers (n = 4); (2) the polymerase enzymes (n = 2); (3) the primer annealing temperature (Ta) specified for the used polymerase; and (4) the amount of DNA input. Initially, 1295 samples were sequenced using Q5 High-Fidelity DNA Polymerase. 112 samples (8.6%) had an exonic variant and an additional 104 samples (8.0%) had an exonic variant that did not pass the variant frequency calling threshold of 30%. After changing the polymerase to TaKaRa LA Taq DNA Polymerase Hot-Start Version: RR042B, all samples had an allele frequency passing the calling threshold. Allele frequency was unaffected by a change in primer, annealing temperature or amount of DNA input. Sequencing of the GBA1 gene using next generation sequencing might be susceptible to a polymerase specific allelic imbalance, which can result in a large amount of flase-negative results. This was resolved in our case by changing the polymerase. Regions displaying low variant calling frequencie

    A Large-Scale Full GBA1 Gene Screening in Parkinson's Disease in the Netherlands.

    Get PDF
    Background: The most common genetic risk factor for Parkinson's disease known is a damaging variant in the GBA1 gene. The entire GBA1 gene has rarely been studied in a large cohort from a single population. The objective of this study was to assess the entire GBA1 gene in Parkinson's disease from a single large population. Methods: The GBA1 gene was assessed in 3402 Dutch Parkinson's disease patients using next-generation sequencing. Frequencies were compared with Dutch controls (n = 655). Family history of Parkinson's disease was compared in carriers and noncarriers. Results: Fifteen percent of patients had a GBA1 nonsynonymous variant (including missense, frameshift, and recombinant alleles), compared with 6.4% of controls (OR, 2.6; P < 0.001). Eighteen novel variants were detected. Variants previously associated with Gaucher's disease were identified in 5.0% of patients compared with 1.5% of controls (OR, 3.4; P < 0.001). The rarely reported complex allele p.D140H + p.E326K appears to likely be a Dutch founder variant, found in 2.4% of patients and 0.9% of controls (OR, 2.7; P = 0.012). The number of first-degree relatives (excluding children) with Parkinson's disease was higher in p.D140H + p.E326K carriers (5.6%, 21 of 376) compared with p.E326K carriers (2.9%, 29 of 1014); OR, 2.0; P = 0.022, suggestive of a dose effect for different GBA1 variants. Conclusions: Dutch Parkinson's disease patients display one of the largest frequencies of GBA1 variants reported so far, consisting in large part of the mild p.E326K variant and the more severe Dutch p.D140H + p.E326K founder allele
    corecore