10 research outputs found

    Improved Design of Bit Synchronization Clock Extraction in Digital Communication System

    No full text
    An improved method is proposed in this design to reduce the phase jitter after the synchronization or the random noise induced phase jitter in a bit synchronization clock extraction circuit. By using a newly added digital filter between the phase detector and the controller, the phase difference pulses from the phase detector are counted and processed, before being transmitted to the controller for adjusting the phase of the output clock. The design is completed by using FPGA chip and VHDL hardware description language and performs the simulation verification on Quartus II. The results show that the improved system performs the accurate extraction of bit synchronized clock, reduces the phase jitter problem, improves the system running efficiency and the ability of anti-interference, and guarantees the synchronization performance of the digital communication system

    Estimation of Soil Salinization by Machine Learning Algorithms in Different Arid Regions of Northwest China

    No full text
    Hyperspectral data has attracted considerable attention in recent years due to its high accuracy in monitoring soil salinization. At present, most existing research focuses on the saline soil in a single area without comparative analysis between regions. The regional differences in the hyperspectral characteristics of saline soil are still unclear. Thus, we chose Golmud in the cold–dry Qaidam Basin (QB–G) and Gaotai–Minghua in the relatively warm–dry Hexi Corridor (HC–GM) as the study areas, and used the deep extreme learning machine (DELM) and sine cosine algorithm–Elman (SCA–Elman) to predict soil salinity, and then selected the most suitable algorithm in these two regions. A total of 79 (QB–G) and 86 (HC–GM) soil samples were collected and tested to obtain their electrical conductivity (EC) and corresponding hyperspectral reflectance (R). We utilized the land surface parameters that affect the soil based on Landsat 8 and digital elevation model (DEM) data, selected the variables using the light gradient boosting machine (LightGBM), and built SCA–Elman and DELM from the hyperspectral reflectance data combined with land surface parameters. The results revealed the following: (1) The soil hyperspectral reflectance in QB–G was higher than that in HC–GM. The soils of QB–G are mainly the chloride type and those of HC–GM mainly belong to the sulfate type, having lower reflectance. (2) The accuracies of some of the SCA–Elman and DELM models in QB–G (the highest MAEv, RMSEv, and Rv2 were 0.09, 0.12 and 0.75, respectively) were higher than those in HC–GM (the highest MAEv, RMSEv, and Rv2 were 0.10, 0.14 and 0.73, respectively), which has flatter terrain and less obvious surface changes. The surface parameters in QB–G had higher correlation coefficients with EC due to the regular altitude change and cold–dry climate. (3) Most of the SCA–Elman results (the mean Rv2 in HC-GM and QB-G were 0.62 and 0.60, respectively) in all areas performed better than the DELM results (the mean Rv2 in HC–GM and QB–G were 0.51 and 0.49, respectively). Therefore, SCA–Elman was more suitable for the soil salinity prediction in HC–GM and QB–G. This can provide a reference for soil salinization monitoring and model selection in the future

    Estimation of Soil Salinization by Machine Learning Algorithms in Different Arid Regions of Northwest China

    No full text
    Hyperspectral data has attracted considerable attention in recent years due to its high accuracy in monitoring soil salinization. At present, most existing research focuses on the saline soil in a single area without comparative analysis between regions. The regional differences in the hyperspectral characteristics of saline soil are still unclear. Thus, we chose Golmud in the cold–dry Qaidam Basin (QB–G) and Gaotai–Minghua in the relatively warm–dry Hexi Corridor (HC–GM) as the study areas, and used the deep extreme learning machine (DELM) and sine cosine algorithm–Elman (SCA–Elman) to predict soil salinity, and then selected the most suitable algorithm in these two regions. A total of 79 (QB–G) and 86 (HC–GM) soil samples were collected and tested to obtain their electrical conductivity (EC) and corresponding hyperspectral reflectance (R). We utilized the land surface parameters that affect the soil based on Landsat 8 and digital elevation model (DEM) data, selected the variables using the light gradient boosting machine (LightGBM), and built SCA–Elman and DELM from the hyperspectral reflectance data combined with land surface parameters. The results revealed the following: (1) The soil hyperspectral reflectance in QB–G was higher than that in HC–GM. The soils of QB–G are mainly the chloride type and those of HC–GM mainly belong to the sulfate type, having lower reflectance. (2) The accuracies of some of the SCA–Elman and DELM models in QB–G (the highest MAEv, RMSEv, and Rv2 were 0.09, 0.12 and 0.75, respectively) were higher than those in HC–GM (the highest MAEv, RMSEv, and Rv2 were 0.10, 0.14 and 0.73, respectively), which has flatter terrain and less obvious surface changes. The surface parameters in QB–G had higher correlation coefficients with EC due to the regular altitude change and cold–dry climate. (3) Most of the SCA–Elman results (the mean Rv2 in HC-GM and QB-G were 0.62 and 0.60, respectively) in all areas performed better than the DELM results (the mean Rv2 in HC–GM and QB–G were 0.51 and 0.49, respectively). Therefore, SCA–Elman was more suitable for the soil salinity prediction in HC–GM and QB–G. This can provide a reference for soil salinization monitoring and model selection in the future

    The Eco-Friendly Biochar and Valuable Bio-Oil from Caragana korshinskii: Pyrolysis Preparation, Characterization, and Adsorption Applications

    No full text
    Carbonization of biomass can prepare carbon materials with excellent properties. In order to explore the comprehensive utilization and recycling of Caragana korshinskii biomass, 15 kinds of Caragana korshinskii biochar (CB) were prepared by controlling the oxygen-limited pyrolysis process. Moreover, we pay attention to the dynamic changes of microstructure of CB and the by-products. The physicochemical properties of CB were characterized by Scanning Electron Microscope (SEM), BET-specific surface area (BET-SSA), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), and Gas chromatography-mass spectrometry (GC-MS). The optimal preparation technology was evaluated by batch adsorption application experiment of NO3−, and the pyrolysis mechanism was explored. The results showed that the pyrolysis temperature is the most important factor in the properties of CB. With the increase of temperature, the content of C, pH, mesoporous structure, BET-SSA of CB increased, the cation exchange capacity (CEC) decreased and then increased, but the yield and the content of O and N decreased. The CEC, pH, and BET-SSA of CB under each pyrolysis process were 16.64–81.4 cmol·kg−1, 6.65–8.99, and 13.52–133.49 m2·g−1, respectively. CB contains abundant functional groups and mesoporous structure. As the pyrolysis temperature and time increases, the bond valence structure of C 1s, Ca 2p, and O 1s is more stable, and the phase structure of CaCO3 is more obvious, where the aromaticity increases, and the polarity decreases. The CB prepared at 650 °C for 3 h presented the best adsorption performance, and the maximum theoretical adsorption capacity for NO3− reached 120.65 mg·g−1. The Langmuir model and pseudo-second-order model can well describe the isothermal and kinetics adsorption process of NO3−, respectively. Compared with other cellulose and lignin-based biomass materials, CB showed efficient adsorption performance of NO3− without complicated modification condition. The by-products contain bio-soil and tail gas, which are potential source of liquid fuel and chemical raw materials. Especially, the bio-oil of CB contains α-d-glucopyranose, which can be used in medical tests and medicines
    corecore