147 research outputs found

    Operational Mechanism of Digital Humanistic Crowdsourcing Project Based on Actor Network Theory

    Get PDF
    This article is to promote the development of digital humanity-related crowdsourcing projects based on actor network theory (ANT). A case study on Shengxuanhuai Documents from Shanghai Library is selected as our research object. The article employs qualitative research approach to investigate core concepts, namely Problematization, Obligatory Passage Point, Interestment, and Mobilisation involved in the underway of the digital humanity-related crowdsourcing project. This study conducts interviews with 32 respondents, including the 10 contractees and 22 users. The crowdsourcing actors in humanity-related projects are mainly the organizers from public libraries, museums, archives, and other digital humanity institutions. Based on the project development documents and semi-structured interview data, we find that the main obstacles to prevent actors engaging in crowdsourcing projects include task guidance, user motivations, platform designs, and competition evaluations. The paper demonstrates the usefulness of ANT’s concepts and explores the contribution of each ANT analytical concept

    The Role of SPARC Protein Expression in the Progress of Gastric Cancer

    Get PDF
    We aimed to investigate the expression of SPARC (secreted protein, acidic and rich in cysteine) in gastric cancer and its relationship with tumor angiogenesis and cancer cells proliferation. Protein expression of SPARC, VEGF, CD34 and Ki-67 in 80 cases of gastric cancer and 30 cases of normal gastric tissue was evaluated by immunohistochemistry. CD34 staining was used as an indicator of microvessel density (MVD). Ki-67 labeling Index (LI) indicated cancer cells proliferation. Statistical analysis was used to investigate its relationship with clinical characteristics, tumor angiogenesis and cancer cells proliferation. SPARC expression was mainly in the stromal cells surrounding the gastric cancer cells, and was statistically significant differences between gastric cancer and normal gastric tissue (P < 0.05). Both the expression of SPARC and VEGF were related to differentiation degree, clinical stage, Lauren classification and lymph node metastasis (P < 0.05). Expression of SPARC was significantly negatively correlated with the expression of VEGF and MVD in gastric cancer tissues. Expression of SPARC was also negatively correlated with Ki-67-LI. Our findings suggest that both the expression of SPARC and VEGF are closed to tumor angiogenesis in gastric cancer, SPARC inhibited tumor angiogenesis but VEGF promoted tumor angiogenesis. SPARC also inhibited cells proliferation of gastric cancer

    The Effect of Zhongyong Thinking on Remote Association Thinking: An EEG Study

    Get PDF
    The Doctrine of the Mean (zhongyong) introduced by Confucianism is not only an aspect of faith, but also a way of thinking for Chinese individuals. Zhongyong includes two thinking forms: eclectic thinking (ET; i.e., “neither-A-nor-B”) and integrated thinking (IT; i.e., “both-A-and-B”). Given the inclination of Asian individuals toward situational cognition, this study used questions about situations familiar to Chinese undergraduates to activate either ET or IT. This was done to investigate the effects of the two divergent thinking forms of zhongyong on performance levels on the Remote Associates Test (RAT). Both behavioral and EEG results found that participants in the IT condition demonstrated higher RAT scores than those in the ET condition. The conclusion was that the RAT and priming tasks shared the same neural mechanism. This meant that the priming tasks of IT allowed participants to enter a state of creative preparation in advance, further affecting resolution of the RAT

    RNA-Seq Analyses of Midgut and Fat Body Tissues Reveal the Molecular Mechanism Underlying Spodoptera litura Resistance to Tomatine

    Get PDF
    Plants produce secondary metabolites to provide chemical defense against herbivorous insects, whereas insects can induce the expression of detoxification metabolism-related unigenes in counter defense to plant xenobiotics. Tomatine is an important secondary metabolite in tomato (Lycopersicon esculentum L.) that can protect the plant from bacteria and insects. However, the mechanism underlying the adaptation of Spodoptera litura, a major tomato pest, to tomatine in tomato is largely unclear. In this study, we first found that the levels of tomatine in tomatoes subjected to S. litura treatment were significantly increased. Second, we confirmed the inhibitory effect of tomatine on S. litura by adding moderate amounts of commercial tomatine to an artificial diet. Then, we utilized RNA-Seq to compare the differentially expressed genes (DEGs) in the midgut and fat body tissues of S. litura exposed to an artificial diet supplemented with tomatine. In total, upon exposure to tomatine, 134 and 666 genes were upregulated in the S. litura midgut and fat body, respectively. These DEGs comprise a significant number of detoxification-related genes, including 7 P450 family genes, 8 glutathione S-transferases (GSTs) genes, 6 ABC transport enzyme genes, 9 UDP-glucosyltransferases genes and 3 carboxylesterases genes. Moreover, KEGG analysis demonstrated that the upregulated genes were enriched in xenobiotic metabolism by cytochrome P450s, ABC transporters and drug metabolism by other enzymes. Furthermore, as numerous GSTs were induced by tomatine in S. litura, we chose one gene, namely GSTS1, to confirm the detoxification function on tomatine. Expression profiling revealed that GSTS1 transcripts were mainly expressed in larvae, and the levels were the highest in the midgut. Finally, when larvae were injected with double-stranded RNA specific to GSTS1, the transcript levels in the midgut and fat body decreased, and the negative effect of the plant xenobiotic tomatine on larval growth was magnified. These results preliminarily clarified the molecular mechanism underlying the resistance of S. litura to tomatine, establishing a foundation for subsequent pest control

    Predictive Value of Plasma MicroRNA-216a/b in the Diagnosis of Esophageal Squamous Cell Carcinoma

    Get PDF
    Esophageal squamous cell carcinoma (ESCC) is a common human malignancy with poor survival, which was usually diagnosed at an advanced stage. MicroRNAs (miRNAs), a class of single stranded noncoding RNAs with only 17-25 ribonucleotides, were demonstrated to play an important role in lots of cancers. In the recent years, increasing evidence revealed that circulating miRNAs exhibited great potential in the diagnosis of various types of cancers. The present study was designed to evaluate the diagnostic value of plasma miRNA-216a/b for ESCC. Our results showed that the expression level of plasma miRNA-216a/b was significantly lower in ESCC patients compared with that of healthy controls. The receiver operating characteristic (ROC) curve analysis yielded an area under the ROC curve (AUC) value of 0.877 [95% CI (confidence interval): 0.818-0.922] for miRNA-216a and 0.756 (95% CI: 0.685-0.819) for miRNA-216b. Clinical data indicated that plasma miRNA-216a/b were inversely correlated with lymph node metastasis and TNM stage. Additionally, the plasma miRNA-216b expression level was significantly upregulated in postoperative samples compared to preoperative samples. Our study, for the first time, demonstrated that plasma miRNA-216a/b might serve as potential biomarkers for the diagnosis of ESCC and dysregulation of miRNA-216a/b might be involved in the progression of ESCC

    Selective Neural Deletion of the Atg7 Gene Reduces Irradiation-Induced Cerebellar White Matter Injury in the Juvenile Mouse Brain by Ameliorating Oligodendrocyte Progenitor Cell Loss

    Get PDF
    Radiotherapy is an effective tool for treating brain tumors, but irradiation-induced toxicity to the normal brain tissue remains a major problem. Here, we investigated if selective neural autophagy related gene 7 (Atg7) deletion has a persistent effect on irradiation-induced juvenile mouse brain injury. Ten-day-old Atg7 knockout under a nestin promoter (KO) mice and wild-type (WT) littermates were subjected to a single dose of 6 Gy whole-brain irradiation. Cerebellar volume, cell proliferation, microglia activation, inflammation, and myelination were evaluated in the cerebellum at 5 days after irradiation. We found that neural Atg7 deficiency partially prevented myelin disruption compared to the WT mice after irradiation, as indicated by myelin basic protein staining. Irradiation induced oligodendrocyte progenitor cell (OPC) loss in the white matter of the cerebellum, and Atg7 deficiency partly prevented this. The mRNA expression of oligodendrocyte and myelination-related genes (Olig2, Cldn11, CNP, and MBP) was higher in the cerebellum in Atg7 KO mice compared with WT littermates. The total cerebellar volume was significantly reduced after irradiation in both Atg7 KO and WT mice. Atg7-deficient cerebellums were in a regenerative state before irradiation, as judged by the increased OPC-related and neurogenesis-related transcripts and the increased numbers of microglia; however, except for the OPC parameters these were the same in both genotypes after irradiation. Finally, there was no significant change in the number of astrocytes in the cerebellum after irradiation. These results suggest that selective neural Atg7 deficiency reduces irradiation-induced cerebellar white matter injury in the juvenile mouse brain, secondary to prevention of OPC loss

    Disrupted Asymmetry of Inter- and Intra-Hemispheric Functional Connectivity at Rest in Medication-Free Obsessive-Compulsive Disorder

    Get PDF
    Disrupted functional asymmetry of cerebral hemispheres may be altered in patients with obsessive-compulsive disorder (OCD). However, little is known about whether anomalous brain asymmetries originate from inter- and/or intra-hemispheric functional connectivity (FC) at rest in OCD. In this study, resting-state functional magnetic resonance imaging was applied to 40 medication-free patients with OCD and 38 gender-, age-, and education-matched healthy controls (HCs). Data were analyzed using the parameter of asymmetry (PAS) and support vector machine methods. Patients with OCD showed significantly increased PAS in the left posterior cingulate cortex, left precentral gyrus/postcentral gyrus, and right inferior occipital gyrus and decreased PAS in the left dorsolateral prefrontal cortex (DLPFC), bilateral middle cingulate cortex (MCC), left inferior parietal lobule, and left cerebellum Crus I. A negative correlation was found between decreased PAS in the left DLPFC and Yale–Brown Obsessive-compulsive Scale compulsive behavior scores in the patients. Furthermore, decreased PAS in the bilateral MCC could be used to distinguish OCD from HCs with a sensitivity of 87.50%, an accuracy of 88.46%, and a specificity of 89.47%. These results highlighted the contribution of disrupted asymmetry of intra-hemispheric FC within and outside the cortico-striato-thalamocortical circuits at rest in the pathophysiology of OCD, and reduced intra-hemispheric FC in the bilateral MCC may serve as a potential biomarker to classify individuals with OCD from HCs

    Artificial trans-encoded small non-coding RNAs specifically silence the selected gene expression in bacteria

    Get PDF
    Recently, many small non-coding RNAs (sRNAs) with important regulatory roles have been identified in bacteria. As their eukaryotic counterparts, a major class of bacterial trans-encoded sRNAs acts by basepairing with target mRNAs, resulting in changes in translation and stability of the mRNA. RNA interference (RNAi) has become a powerful gene silencing tool in eukaryotes. However, such an effective RNA silencing tool remains to be developed for prokaryotes. In this study, we described first the use of artificial trans-encoded sRNAs (atsRNAs) for specific gene silencing in bacteria. Based on the common structural characteristics of natural sRNAs in Gram-negative bacteria, we developed the designing principle of atsRNA. Most of the atsRNAs effectively suppressed the expression of exogenous EGFP gene and endogenous uidA gene in Escherichia coli. Further studies demonstrated that the mRNA base pairing region and AU rich Hfq binding site were crucial for the activity of atsRNA. The atsRNA-mediated gene silencing was Hfq dependent. The atsRNAs led to gene silencing and RNase E dependent degradation of target mRNA. We also designed a series of atsRNAs which targeted the toxic genes in Staphyloccocus aureus, but found no significant interfering effect. We established an effective method for specific gene silencing in Gram-negative bacteria
    corecore