14 research outputs found

    Prediction of Vortex-Induced Vibration Response of Deep Sea Top-Tensioned Riser in Sheared Flow Considering Parametric Excitations

    No full text
    It is widely accepted that vortex-induced vibration (VIV) is a major concern in the design of deep sea top-tensioned risers, especially when the riser is subjected to axial parametric excitations. An improved time domain prediction model was proposed in this paper. The prediction model was based on classical van der Pol wake oscillator models, and the impacts of the riser in-line vibration and vessel heave motion were considered. The finite element, Newmark-β and Newton‒Raphson methods were adopted to solve the coupled nonlinear partial differential equations. The entire numerical solution process was realised by a self-developed program based on MATLAB. Comparisons between the numerical calculation and the published experimental test were conducted in this paper. The in-line and cross-flow VIV responses of a real size top-tensioned riser in linear sheared flow were analysed. The effects of the vessel heave amplitude and frequency on the riser VIV were also studied. The results show that the vibration displacements of the riser are larger than the case without vessel heave motion. The vibration modes and frequencies of the riser are also changed due to the vessel heave motio

    Prediction of Vortex-Induced Vibration Response of Deep Sea Top-Tensioned Riser in Sheared Flow Considering Parametric Excitations

    No full text
    It is widely accepted that vortex-induced vibration (VIV) is a major concern in the design of deep sea top-tensioned risers, especially when the riser is subjected to axial parametric excitations. An improved time domain prediction model was proposed in this paper. The prediction model was based on classical van der Pol wake oscillator models, and the impacts of the riser in-line vibration and vessel heave motion were considered. The finite element, Newmark-β and Newton‒Raphson methods were adopted to solve the coupled nonlinear partial differential equations. The entire numerical solution process was realised by a self-developed program based on MATLAB. Comparisons between the numerical calculation and the published experimental test were conducted in this paper. The in-line and cross-flow VIV responses of a real size top-tensioned riser in linear sheared flow were analysed. The effects of the vessel heave amplitude and frequency on the riser VIV were also studied. The results show that the vibration displacements of the riser are larger than the case without vessel heave motion. The vibration modes and frequencies of the riser are also changed due to the vessel heave motio

    Study on Vortex-Induced Vibration of Deep-Water Marine Drilling Risers in Linearly Sheared Flows in consideration of Changing Added Mass

    No full text
    In order to more accurately predict the coupled in-line and cross-flow vortex-induced vibration (VIV) response of deep-water marine drilling risers in linearly sheared flows, an improved three-dimensional time-domain coupled model based on van der Pol wake oscillator models was established in this paper. The impact of the in-line and cross-flow changing added mass coefficients was taken into account in the model. The finite element, Newmark-β, and Newton–Raphson methods were adopted to solve the coupled nonlinear partial differential equations. The entire numerical solution process was realized by a self-developed program based on MATLAB. Comparisons between the numerical calculations and the published experimental tests showed that the improved model can more accurately predict some main features of the coupled in-line and cross-flow VIV of long slender flexible risers in linearly sheared flows to some extent. The coupled in-line and cross-flow VIV of a real-size marine drilling riser, usually used in the deep-water oil/gas industry in the South China Sea, was analyzed. The influence of top tension force and seawater flow speed, as well as platform heave amplitude and frequency, on the riser in-line and cross-flow VIV was also discussed. The results show that the platform heave motion increases the VIV displacements and changes the magnitudes of peak frequencies as well as the components of frequencies. The platform heave motion also has a significant influence on the vibration modes of the middle and upper sections of the riser. The impact level of each factor on the in-line and cross-flow VIV response of the riser is different. The improved model and the results of this paper can be used as a reference for the engineering design of deep-water marine drilling risers

    Genetic subtypes and phenotypic characteristics of 110 patients with Prader-Willi syndrome

    No full text
    Abstract Background Prader-Willi syndrome (PWS) is a complex disorder caused by impaired paternally expressed genes on chromosome 15q11-q13. Variable findings have been reported about the phenotypic differences among PWS genetic subtypes. Methods A total of 110 PWS patients were diagnosed from 8,572 pediatric patients included from July 2013 to December 2021 by MLPA and MS-MLPA assays. Atypical deletions were defined by genomic CNV-sequencing. Maternal uniparental disomy (UPD) was subgrouped by microsatellite genotyping. Clinical data were collected for phenotype-genotype associations. Twenty-one patients received growth hormone (GH) treatment, and the anthropometric and laboratory parameters were evaluated and compared. Results Genetically, the 110 patients with PWS included 29 type I deletion, 56 type II deletion, 6 atypical deletion, 11 heterodisomy UPD, and 8 isodisomy UPD. The UPD group had significantly higher maternal age (31.4 ± 3.4 vs 27.8 ± 3.8 years), more anxiety (64.29% vs 26.09%) and autistic traits (57.14% vs 26.09%), and less hypopigmentation (42.11% vs 68.24%) and skin picking (42.86% vs 71.01%) than the deletion group. The type I deletion group was diagnosed at earlier age (3.7 ± 3.3 vs 6.2 ± 3.2 years) and more common in speech delay (95.45% vs 63.83%) than the type II. The isodisomy UPD group showed a higher tendency of anxiety (83.33% vs 50%) than the heterodisomy. GH treatment for 1 year significantly improved the SDS of height (− 0.43 ± 0.68 vs − 1.32 ± 1.19) and IGF-I (− 0.45 ± 0.48 vs − 1.97 ± 1.12). No significant changes were found in thyroid function or glucose/lipid metabolism. Conclusion We explored the physical, psychological and behavioral phenotype-genotype associations as well as the GH treatment effect on PWS from a large cohort of Chinese pediatric patients. Our data might promote pediatricians' recognition and early diagnosis of PWS

    Molecular basis of methyl-salicylate-mediated plant airborne defence

    No full text
    Aphids transmit viruses and are destructive crop pests . Plants that have been attacked by aphids release volatile compounds to elicit airborne defence (AD) in neighbouring plants . However, the mechanism underlying AD is unclear. Here we reveal that methyl-salicylate (MeSA), salicylic acid-binding protein-2 (SABP2), the transcription factor NAC2 and salicylic acid-carboxylmethyltransferase-1 (SAMT1) form a signalling circuit to mediate AD against aphids and viruses. Airborne MeSA is perceived and converted into salicylic acid by SABP2 in neighbouring plants. Salicylic acid then causes a signal transduction cascade to activate the NAC2-SAMT1 module for MeSA biosynthesis to induce plant anti-aphid immunity and reduce virus transmission. To counteract this, some aphid-transmitted viruses encode helicase-containing proteins to suppress AD by interacting with NAC2 to subcellularly relocalize and destabilize NAC2. As a consequence, plants become less repellent to aphids, and more suitable for aphid survival, infestation and viral transmission. Our findings uncover the mechanistic basis of AD and an aphid-virus co-evolutionary mutualism, demonstrating AD as a potential bioinspired strategy to control aphids and viruses
    corecore