843 research outputs found

    Experimental study on sensor fault detection and diagnosis and estimation of centrifugal chiller system

    Get PDF
    2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Revealing microstructural evolutions, mechanical properties and wear performance of wire arc additive manufacturing homogeneous and heterogeneous NiTi alloy

    Get PDF
    Heterogeneous microstructure designs have attracted a great deal of attention, not only because they have the potential to achieve an ideal combination of two conflicting properties, but also because the processes involved in their fabrication are cost-effective and can be scaled up for industrial production. The process parameters in the preparation process have an important effect on the microstructure and properties of alloy members prepared by wire arc additive manufacturing (WAAM) technology. It was expected that the spatial heterogeneous microstructure with large microstructural heterogeneities in metals can be formed through changing the process parameters. In this work, homogeneous NiTi thin-walled component and heterogeneous NiTi thin-walled component were fabricated using WAAM technology by adjusting the heat input. The effects of deposition height and heat input on the microstructure, mechanical properties and wear properties of WAAM NiTi alloys were investigated. The results show that grains were gradually refined with the increase of deposition height in the homogeneous WAAM NiTi component. The ultimate tensile strength of homogeneous WAAM NiTi component increased from 606.87 MPa to 654.45 MPa and the elongation increased from 12.72% to 15.38%, as the increase of deposition height. Moreover, the homogeneous WAAM NiTi component exhibited excellent wear resistance, the coefficient of friction decreased from 0.760 to 0.715 with the increase of deposition height. Meanwhile, the grains in the heterogeneous WAAM NiTi component shows the finest grains in the central region. The ultimate tensile strength of the lower region, middle region and upper region of heterogeneous WAAM NiTi components were 556.12 MPa, 599.53 MPa and 739.79 MPa, and the elongations were 12.98%, 16.69%, 21.74%, respectively. The coefficient of friction for the lower region, middle region and upper region of heterogeneous WAAM NiTi components were 0.713, 0.720 and 0.710, respectively. The microhardness and cyclic compression properties of the homogeneous components with higher heat input were better than those of the heterogeneous components for the same deposition height. The tensile yield strength, elongation and wear resistance of the heterogeneous components were superior compared to the homogeneous components. These results can be used to optimize the WAAM process parameters to prepare NiTi components with excellent mechanical properties

    Gene and protein expression of glucose transporter 1 and glucose transporter 3 in human laryngeal cancer—the relationship with regulatory hypoxia-inducible factor-1α expression, tumor invasiveness, and patient prognosis

    Get PDF
    Increased glucose uptake mediated by glucose transporters and reliance on glycolysis are common features of malignant cells. Hypoxia-inducible factor-1α supports the adaptation of hypoxic cells by inducing genes related to glucose metabolism. The contribution of glucose transporter (GLUT) and hypoxia-inducible factor-1α (HIF-1α) activity to tumor behavior and their prognostic value in head and neck cancers remains unclear. The aim of this study was to examine the predictive value of GLUT1, GLUT3, and HIF-1α messenger RNA (mRNA)/protein expression as markers of tumor aggressiveness and prognosis in laryngeal cancer. The level of hypoxia/metabolic marker genes was determined in 106 squamous cell laryngeal cancer (SCC) and 73 noncancerous matched mucosa (NCM) controls using quantitative realtime PCR. The related protein levels were analyzed by Western blot. Positive expression of SLC2A1, SLC2A3, and HIF-1α genes was noted in 83.9, 82.1, and 71.7 % of SCC specimens and in 34.4, 59.4, and 62.5 % of laryngeal cancer samples. Higher levels of mRNA/protein for GLUT1 and HIF-1α were noted in SCC compared to NCM (p<0.05). SLC2A1 was found to have a positive relationship with grade, tumor front grading (TFG) score, and depth and mode of invasion (p<0.05). SLC2A3 was related to grade and invasion type (p<0.05). There were also relationships of HIF-1α with pTNM, TFG scale, invasion depth and mode, tumor recurrences, and overall survival (p<0.05). In addition, more advanced tumors were found to be more likely to demonstrate positive expression of these proteins. In conclusion, the hypoxia/metabolic markers studied could be used as molecular markers of tumor invasiveness in laryngeal cancer.This work was supported, in part, by the statutory fund of the Department of Cytobiochemistry, University of Łódź, Poland (506/811), and by grant fromtheNational Science Council, Poland (N403 043 32/2326)

    Restoration of XAF1 expression inhibits gastric and colonic tumorigenesis in vivo

    Get PDF
    This journal suppl. contain abstracts of the 8th Medical Research Conference, Medical Science Group, Queen Mary Hospital, Hong Kongpublished_or_final_versio

    Asthma susceptible genes in Chinese population: A meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Published data regarding the associations between genetic variants and asthma risk in Chinese population were inconclusive. The aim of this study was to investigate asthma susceptible genes in Chinese population.</p> <p>Methods</p> <p>The authors conducted 18 meta-analyzes for 18 polymorphisms in 13 genes from eighty-two publications.</p> <p>Results</p> <p>Seven polymorphisms were found being associated with risk of asthma, namely: <it>A Disintegrin and Metalloprotease 33 </it>(<it>ADAM33</it>) T1-C/T (odds ratio [OR] = 6.07, 95% confidence interval [CI]: 2.69-13.73), <it>Angiotensin-Converting Enzyme </it>(<it>ACE</it>) D/I (OR = 3.85, 95%CI: 2.49-5.94), <it>High-affinity IgE receptor β chain </it>(<it>FcεRIβ</it>) -6843G/A (OR = 1.49, 95%CI: 1.01-2.22), <it>Interleukin 13</it>(<it>IL-13</it>) -1923C/T (OR = 2.99, 95%CI: 2.12-4.24), <it>IL-13 </it>-2044A/G (OR = 1.49, 95%CI: 1.07-2.08), <it>Regulated upon Activation, Normal T cell Expressed and Secreted </it>(<it>RANTES</it>) -28C/G (OR = 1.64, 95%CI: 1.09-2.46), <it>Tumor Necrosis Factor-α </it>(<it>TNF-α</it>) -308G/A(OR = 1.42, 95%CI: 1.09, 1.85). After subgroup analysis by age, the <it>ACE </it>D/I, <it>β2-Adrenergic Receptor </it>(<it>β2-AR</it>) -79G/C, <it>TNF-α </it>-308G/A, <it>Interleukin 4 receptor</it>(<it>IL-4R</it>) -1902G/A and <it>IL-13 </it>-1923C/T polymorphisms were found significantly associated with asthma risk in Chinese children. In addition, the <it>ACE </it>D/I, <it>FcεRIβ </it>-6843G/A, <it>TNF-α </it>-308G/A, <it>IL-13 </it>-1923C/T and <it>IL-13 </it>-2044A/G polymorphisms were associated with asthma risk in Chinese adults.</p> <p>Conclusion</p> <p><it>ADAM33, FcεRIβ, RANTES, TNF-α, ACE, β2-AR, IL-4R </it>and <it>IL-13 </it>genes could be proposed as asthma susceptible genes in Chinese population. Given the limited number of studies, more data are required to validate these associations.</p

    Transcriptome analysis of orange-spotted grouper (Epinephelus coioides) spleen in response to Singapore grouper iridovirus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Orange-spotted grouper (<it>Epinephelus coioides</it>) is an economically important marine fish cultured in China and Southeast Asian countries. The emergence of infectious viral diseases, including iridovirus and betanodavirus, have severely affected food products based on this species, causing heavy economic losses. Limited available information on the genomics of <it>E. coioides </it>has hampered the understanding of the molecular mechanisms that underlie host-virus interactions. In this study, we used a 454 pyrosequencing method to investigate differentially-expressed genes in the spleen of the <it>E. coioides </it>infected with Singapore grouper iridovirus (SGIV).</p> <p>Results</p> <p>Using 454 pyrosequencing, we obtained abundant high-quality ESTs from two spleen-complementary DNA libraries which were constructed from SGIV-infected (V) and PBS-injected fish (used as a control: C). A total of 407,027 and 421,141 ESTs were produced in control and SGIV infected libraries, respectively. Among the assembled ESTs, 9,616 (C) and 10,426 (V) ESTs were successfully matched against known genes in the NCBI non-redundant (nr) database with a cut-off E-value above 10<sup>-5</sup>. Gene ontology (GO) analysis indicated that "cell part", "cellular process" and "binding" represented the largest category. Among the 25 clusters of orthologous group (COG) categories, the cluster for "translation, ribosomal structure and biogenesis" represented the largest group in the control (185 ESTs) and infected (172 ESTs) libraries. Further KEGG analysis revealed that pathways, including cellular metabolism and intracellular immune signaling, existed in the control and infected libraries. Comparative expression analysis indicated that certain genes associated with mitogen-activated protein kinase (MAPK), chemokine, toll-like receptor and RIG-I signaling pathway were alternated in response to SGIV infection. Moreover, changes in the pattern of gene expression were validated by qRT-PCR, including cytokines, cytokine receptors, and transcription factors, apoptosis-associated genes, and interferon related genes.</p> <p>Conclusion</p> <p>This study provided abundant ESTs that could contribute greatly to disclosing novel genes in marine fish. Furthermore, the alterations of predicted gene expression patterns reflected possible responses of these fish to the virus infection. Taken together, our data not only provided new information for identification of novel genes from marine vertebrates, but also shed new light on the understanding of defense mechanisms of marine fish to viral pathogens.</p

    Towards High Capacity Li-ion Batteries Based on Silicon-Graphene Composite Anodes and Sub-micron V-doped LiFePO4 Cathodes

    Get PDF
    Lithium iron phosphate, LiFePO4 (LFP) has demonstrated promising performance as a cathode material in lithium ion batteries (LIBs), by overcoming the rate performance issues from limited electronic conductivity. Nano-sized vanadium-doped LFP (V-LFP) was synthesized using a continuous hydrothermal process using supercritical water as a reagent. The atomic % of dopant determined the particle shape. 5 at. % gave mixed plate and rod-like morphology, showing optimal electrochemical performance and good rate properties vs. Li. Specific capacities of >160 mAh g−1 were achieved. In order to increase the capacity of a full cell, V-LFP was cycled against an inexpensive micron-sized metallurgical grade Si-containing anode. This electrode was capable of reversible capacities of approximately 2000 mAh g−1 for over 150 cycles vs. Li, with improved performance resulting from the incorporation of few layer graphene (FLG) to enhance conductivity, tensile behaviour and thus, the composite stability. The cathode material synthesis and electrode formulation are scalable, inexpensive and are suitable for the fabrication of larger format cells suited to grid and transport applications

    Enhanced electrochemical reduction of hydrogen peroxide by Co3O4 nanowire electrode

    Get PDF
    Crystalline Co3O4 nanowire arrays with different morphologies grown on Ni foam were investigated by varying the reaction temperature, the concentration of precursors, and reaction time. The Co3O4 nanowires synthesized under typical reaction condition had a diameter range of approximately 500–900 nm with a length of 17 µm. Electrochemical reduction of hydrogen peroxide (H2O2) of the optimized Co3O4 nanowire electrode was studied by cyclic voltammetry. A high current density of 101.8 mA cm−2 was obtained at −0.4 V in a solution of 0.4 M H2O2 and 3.0 M NaOH at room temperature compared to 85.8 mA cm−2 at −0.35 V of the Co3O4 nanoparticle electrode. Results clearly indicated that the Ni foam supported Co3O4 nanowire electrode exhibited superior catalytic activity and mass transport kinetics for H2O2 electrochemical reduction
    corecore