182 research outputs found
Grey scale enhancement by a new self-made contrast agent in early cirrhotic stage of rabbit liver
<p>Abstract</p> <p>Background</p> <p>The development of new ultrasound contrast agents (UCAs) has become one of the most promising fields in ultrasound medicine. This paper evaluates a new self-made contrast agent enhancement effect developed to study the fibrotic stages of the liver in perfusion models <it>in vivo</it>.</p> <p>Methods</p> <p>We constructed experimental models of hepatic fibrosis involving five stages from F0 to F4 via administration of CCL<sub>4 </sub>(0.01 ml/kg BW) every 3 days for 3 months. The intrahepatic circulatory time of the contrast agent was analyzed via an image and Cine-loop display. Calculations of the perfusion-related parameters including the peak signal intensity (PSI) and peak signal intensity time (PIT) of the portal vein and parenchyma were obtained from an analysis of the time-acoustic intensity curve.</p> <p>Results</p> <p>Hepatic artery to vein transmit time (HA-HVTT) was significantly shorter at F4 stage (mean 5.1 seconds) compared with those in other stages (mean 8.3 s, 7.5 s, 6.9 s, 6.6 s, P < 0.01). The average PSI difference of PV-parenchyma was 13.62 dB in F4 stage, demonstrating significant differences between F4 stage and other early stages (P < 0.001).</p> <p>Conclusion</p> <p>These results indicate that the new self-made contrast agent is capable of indicating intrahepatic hemodynamic changes. HA-HVTT and the PSI difference of the microbubble perfusion in liver parenchyma and PV were considered to differentiate the degree of hepatic fibrosis between F4 and other early stages.</p
Asthma susceptible genes in Chinese population: A meta-analysis
<p>Abstract</p> <p>Background</p> <p>Published data regarding the associations between genetic variants and asthma risk in Chinese population were inconclusive. The aim of this study was to investigate asthma susceptible genes in Chinese population.</p> <p>Methods</p> <p>The authors conducted 18 meta-analyzes for 18 polymorphisms in 13 genes from eighty-two publications.</p> <p>Results</p> <p>Seven polymorphisms were found being associated with risk of asthma, namely: <it>A Disintegrin and Metalloprotease 33 </it>(<it>ADAM33</it>) T1-C/T (odds ratio [OR] = 6.07, 95% confidence interval [CI]: 2.69-13.73), <it>Angiotensin-Converting Enzyme </it>(<it>ACE</it>) D/I (OR = 3.85, 95%CI: 2.49-5.94), <it>High-affinity IgE receptor β chain </it>(<it>FcεRIβ</it>) -6843G/A (OR = 1.49, 95%CI: 1.01-2.22), <it>Interleukin 13</it>(<it>IL-13</it>) -1923C/T (OR = 2.99, 95%CI: 2.12-4.24), <it>IL-13 </it>-2044A/G (OR = 1.49, 95%CI: 1.07-2.08), <it>Regulated upon Activation, Normal T cell Expressed and Secreted </it>(<it>RANTES</it>) -28C/G (OR = 1.64, 95%CI: 1.09-2.46), <it>Tumor Necrosis Factor-α </it>(<it>TNF-α</it>) -308G/A(OR = 1.42, 95%CI: 1.09, 1.85). After subgroup analysis by age, the <it>ACE </it>D/I, <it>β2-Adrenergic Receptor </it>(<it>β2-AR</it>) -79G/C, <it>TNF-α </it>-308G/A, <it>Interleukin 4 receptor</it>(<it>IL-4R</it>) -1902G/A and <it>IL-13 </it>-1923C/T polymorphisms were found significantly associated with asthma risk in Chinese children. In addition, the <it>ACE </it>D/I, <it>FcεRIβ </it>-6843G/A, <it>TNF-α </it>-308G/A, <it>IL-13 </it>-1923C/T and <it>IL-13 </it>-2044A/G polymorphisms were associated with asthma risk in Chinese adults.</p> <p>Conclusion</p> <p><it>ADAM33, FcεRIβ, RANTES, TNF-α, ACE, β2-AR, IL-4R </it>and <it>IL-13 </it>genes could be proposed as asthma susceptible genes in Chinese population. Given the limited number of studies, more data are required to validate these associations.</p
Dissociation of Motor Task-Induced Cortical Excitability and Pain Perception Changes in Healthy Volunteers
Background: There is evidence that interventions aiming at modulation of the motor cortex activity lead to pain reduction. In order to understand further the role of the motor cortex on pain modulation, we aimed to compare the behavioral (pressure pain threshold) and neurophysiological effects (transcranial magnetic stimulation (TMS) induced cortical excitability) across three different motor tasks. Methodology/Principal Findings Fifteen healthy male subjects were enrolled in this randomized, controlled, blinded, cross-over designed study. Three different tasks were tested including motor learning with and without visual feedback, and simple hand movements. Cortical excitability was assessed using single and paired-pulse TMS measures such as resting motor threshold (RMT), motor-evoked potential (MEP), intracortical facilitation (ICF), short intracortical inhibition (SICI), and cortical silent period (CSP). All tasks showed significant reduction in pain perception represented by an increase in pressure pain threshold compared to the control condition (untrained hand). ANOVA indicated a difference among the three tasks regarding motor cortex excitability change. There was a significant increase in motor cortex excitability (as indexed by MEP increase and CSP shortening) for the simple hand movements. Conclusions/Significance: Although different motor tasks involving motor learning with and without visual feedback and simple hand movements appear to change pain perception similarly, it is likely that the neural mechanisms might not be the same as evidenced by differential effects in motor cortex excitability induced by these tasks. In addition, TMS-indexed motor excitability measures are not likely good markers to index the effects of motor-based tasks on pain perception in healthy subjects as other neural networks besides primary motor cortex might be involved with pain modulation during motor training
On the way to large-scale and high-resolution brain-chip interfacing
Brain-chip-interfaces (BCHIs) are hybrid entities where chips and nerve cells establish a close physical interaction allowing the transfer of information in one or both directions. Typical examples are represented by multi-site-recording chips interfaced to cultured neurons, cultured/acute brain slices, or implanted “in vivo”. This paper provides an overview on recent achievements in our laboratory in the field of BCHIs leading to enhancement of signals transmission from nerve cells to chip or from chip to nerve cells with an emphasis on in vivo interfacing, either in terms of signal-to-noise ratio or of spatiotemporal resolution. Oxide-insulated chips featuring large-scale and high-resolution arrays of stimulation and recording elements are presented as a promising technology for high spatiotemporal resolution interfacing, as recently demonstrated by recordings obtained from hippocampal slices and brain cortex in implanted animals. Finally, we report on an automated tool for processing and analysis of acquired signals by BCHIs
Identification of a Novel Marine Fish Virus, Singapore Grouper Iridovirus-Encoded MicroRNAs Expressed in Grouper Cells by Solexa Sequencing
BACKGROUND: MicroRNAs (miRNAs) are ubiquitous non-coding RNAs that regulate gene expression at the post-transcriptional level. An increasing number of studies has revealed that viruses can also encode miRNAs, which are proposed to be involved in viral replication and persistence, cell-mediated antiviral immune response, angiogenesis, and cell cycle regulation. Singapore grouper iridovirus (SGIV) is a pathogenic iridovirus that has severely affected grouper aquaculture in China and Southeast Asia. Comprehensive knowledge about the related miRNAs during SGIV infection is helpful for understanding the infection and the pathogenic mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: To determine whether SGIV encoded miRNAs during infection, a small RNA library derived from SGIV-infected grouper (GP) cells was constructed and sequenced by Illumina/Solexa deep-sequencing technology. We recovered 6,802,977 usable reads, of which 34,400 represented small RNA sequences encoded by SGIV. Sixteen novel SGIV-encoded miRNAs were identified by a computational pipeline, including a miRNA that shared a similar sequence to herpesvirus miRNA HSV2-miR-H4-5p, which suggests miRNAs are conserved in far related viruses. Generally, these 16 miRNAs are dispersed throughout the SGIV genome, whereas three are located within the ORF057L region. Some SGIV-encoded miRNAs showed marked sequence and length heterogeneity at their 3' and/or 5' end that could modulate their functions. Expression levels and potential biological activities of these viral miRNAs were examined by stem-loop quantitative RT-PCR and luciferase reporter assay, respectively, and 11 of these viral miRNAs were present and functional in SGIV-infected GP cells. CONCLUSIONS: Our study provided a genome-wide view of miRNA production for iridoviruses and identified 16 novel viral miRNAs. To the best of our knowledge, this is the first experimental demonstration of miRNAs encoded by aquatic animal viruses. The results provide a useful resource for further in-depth studies on SGIV infection and iridovirus pathogenesis
Genome-Wide Bovine H3K27me3 Modifications and the Regulatory Effects on Genes Expressions in Peripheral Blood Lymphocytes
Gene expression of lymphocytes was found to be influenced by histone methylation in mammals and trimethylation of lysine 27 on histone H3 (H3K27me3) normally represses genes expressions. Peripheral blood lymphocytes are the main source of somatic cells in the milk of dairy cows that vary frequently in response to the infection or injury of mammary gland and number of parities.The genome-wide status of H3K27me3 modifications on blood lymphocytes in lactating Holsteins was performed via ChIP-Seq approach. Combined with digital gene expression (DGE) technique, the regulation effects of H3K27me3 on genes expressions were analyzed.The ChIP-seq results showed that the peaks of H3K27me3 in cows lymphocytes were mainly enriched in the regions of up20K (~50%), down20K (~30%) and intron (~28%) of the genes. Only ~3% peaks were enriched in exon regions. Moreover, the highest H3K27me3 modification levels were mainly around the 2 Kb upstream of transcriptional start sites (TSS) of the genes. Using conjoint analysis with DGE data, we found that H3K27me3 marks tended to repress target genes expressions throughout whole gene regions especially acting on the promoter region. A total of 53 differential expressed genes were detected in third parity cows compared to first parity, and the 25 down-regulated genes (PSEN2 etc.) were negatively correlated with H3K27me3 levels on up2Kb to up1Kb of the genes, while the up-regulated genes were not showed in this relationship.The first blueprint of bovine H3K27me3 marks that mediates gene silencing was generated. H3K27me3 plays its repressed role mainly in the regulatory region in bovine lymphocytes. The up2Kb to up1Kb region of the down-regulated genes in third parity cows could be potential target of H3K27me3 regulation. Further studies are warranted to understand the regulation mechanisms of H3K27me3 on somatic cell count increases and milk losses in latter parities of cows
Mechanisms of Resistance to Noncovalent Bruton's Tyrosine Kinase Inhibitors
Background Covalent (irreversible) Bruton's tyrosine kinase (BTK) inhibitors have transformed the treatment of multiple B-cell cancers, especially chronic lymphocytic leukemia (CLL). However, resistance can arise through multiple mechanisms, including acquired mutations in BTK at residue C481, the binding site of covalent BTK inhibitors. Noncovalent (reversible) BTK inhibitors overcome this mechanism and other sources of resistance, but the mechanisms of resistance to these therapies are currently not well understood. Methods We performed genomic analyses of pretreatment specimens as well as specimens obtained at the time of disease progression from patients with CLL who had been treated with the noncovalent BTK inhibitor pirtobrutinib. Structural modeling, BTK-binding assays, and cell-based assays were conducted to study mutations that confer resistance to noncovalent BTK inhibitors. Results Among 55 treated patients, we identified 9 patients with relapsed or refractory CLL and acquired mechanisms of genetic resistance to pirtobrutinib. We found mutations (V416L, A428D, M437R, T474I, and L528W) that were clustered in the kinase domain of BTK and that conferred resistance to both noncovalent BTK inhibitors and certain covalent BTK inhibitors. Mutations in BTK or phospholipase C gamma 2 (PLCγ2), a signaling molecule and downstream substrate of BTK, were found in all 9 patients. Transcriptional activation reflecting B-cell-receptor signaling persisted despite continued therapy with noncovalent BTK inhibitors.Conclusions Resistance to noncovalent BTK inhibitors arose through on-target BTK mutations and downstream PLCγ2 mutations that allowed escape from BTK inhibition. A proportion of these mutations also conferred resistance across clinically approved covalent BTK inhibitors. These data suggested new mechanisms of genomic escape from established covalent and novel noncovalent BTK inhibitors. (Funded by the American Society of Hematology and others.
- …