28,891 research outputs found
Distributive Stochastic Learning for Delay-Optimal OFDMA Power and Subband Allocation
In this paper, we consider the distributive queue-aware power and subband
allocation design for a delay-optimal OFDMA uplink system with one base
station, users and independent subbands. Each mobile has an uplink
queue with heterogeneous packet arrivals and delay requirements. We model the
problem as an infinite horizon average reward Markov Decision Problem (MDP)
where the control actions are functions of the instantaneous Channel State
Information (CSI) as well as the joint Queue State Information (QSI). To
address the distributive requirement and the issue of exponential memory
requirement and computational complexity, we approximate the subband allocation
Q-factor by the sum of the per-user subband allocation Q-factor and derive a
distributive online stochastic learning algorithm to estimate the per-user
Q-factor and the Lagrange multipliers (LM) simultaneously and determine the
control actions using an auction mechanism. We show that under the proposed
auction mechanism, the distributive online learning converges almost surely
(with probability 1). For illustration, we apply the proposed distributive
stochastic learning framework to an application example with exponential packet
size distribution. We show that the delay-optimal power control has the {\em
multi-level water-filling} structure where the CSI determines the instantaneous
power allocation and the QSI determines the water-level. The proposed algorithm
has linear signaling overhead and computational complexity ,
which is desirable from an implementation perspective.Comment: To appear in Transactions on Signal Processin
Convergence-Optimal Quantizer Design of Distributed Contraction-based Iterative Algorithms with Quantized Message Passing
In this paper, we study the convergence behavior of distributed iterative
algorithms with quantized message passing. We first introduce general iterative
function evaluation algorithms for solving fixed point problems distributively.
We then analyze the convergence of the distributed algorithms, e.g. Jacobi
scheme and Gauss-Seidel scheme, under the quantized message passing. Based on
the closed-form convergence performance derived, we propose two quantizer
designs, namely the time invariant convergence-optimal quantizer (TICOQ) and
the time varying convergence-optimal quantizer (TVCOQ), to minimize the effect
of the quantization error on the convergence. We also study the tradeoff
between the convergence error and message passing overhead for both TICOQ and
TVCOQ. As an example, we apply the TICOQ and TVCOQ designs to the iterative
waterfilling algorithm of MIMO interference game.Comment: 17 pages, 9 figures, Transaction on Signal Processing, accepte
Carrier-envelope phase dependence in single-cycle laser pulse propagation with the inclusion of counter-rotating terms
We focus on the propagation properties of a single-cycle laser pulse through
a two-level medium by numerically solving the full-wave Maxwell-Bloch
equations. The counter-rotating terms in the spontaneous emission damping are
included such that the equations of motion are slightly different from the
conventional Bloch equations. The counter-rotating terms can considerably
suppress the broadening of the pulse envelope and the decrease of the group
velocity rooted from dispersion. Furthermore, for incident single-cycle pulses
with envelope area 4, the time-delay of the generated soliton pulse from
the main pulse depends crucially on the carrier-envelope phase of the incident
pulse. This can be utilized to determine the carrier-envelope phase of the
single-cycle laser pulse.Comment: 6 pages, 5 figure
Metallic and semi-metallic <100> silicon nanowires
Silicon nanowires grown along the -direction with a bulk Si core are
studied with density functional calculations. Two surface reconstructions
prevail after exploration of a large fraction of the phase space of nanowire
reconstructions. Despite their energetical equivalence, one of the
reconstructions is found to be strongly metallic while the other one is
semi-metallic. This electronic-structure behavior is dictated by the particular
surface states of each reconstruction. These results imply that doping is not
required in order to obtain good conducting Si nanowires.Comment: 13 pages, 4 figures; Phys. Rev. Lett., in pres
- …