9,676 research outputs found

    Conductance characteristics between a normal metal and a two-dimensional Fulde-Ferrell-Larkin-Ovchinnikov superconductor: the Fulde-Ferrell state

    Full text link
    The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state has received renewed interest recently due to the experimental indication of its presence in CeCoIn5_5, a quasi 2-dimensional (2D) d-wave superconductor. However direct evidence of the spatial variation of the superconducting order parameter, which is the hallmark of the FFLO state, does not yet exist. In this work we explore the possibility of detecting the phase structure of the order parameter directly using conductance spectroscopy through micro-constrictions, which probes the phase sensitive surface Andreev bound states of d-wave superconductors. We employ the Blonder-Tinkham-Klapwijk formalism to calculate the conductance characteristics between a normal metal (N) and a 2D ss- or dx2y2d_{x^2-y^2}-wave superconductor in the Fulde-Ferrell state, for all barrier parameter zz from the point contact limit (z=0z=0) to the tunneling limit (z1z \gg 1). We find that the zero-bias conductance peak due to these surface Andreev bound states observed in the uniform d-wave superconductor is split and shifted in the Fulde-Ferrell state. We also clarify what weighted bulk density of states is measured by the conductance in the limit of large zz.Comment: 10 pages, 13 figure

    Poisoning by purity: what stops stereocomplex crystallization in polylactide racemate?

    Get PDF
    Formation of stereocomplex crystals (SC) is an effective way to improve the heat resistance and mechanical performance of poly(lactic acid) products. However, at all but the slowest cooling rates, SC crystallization of a high-molecular-weight poly(l-lactic acid)/poly(d-lactic acid) (PLLA/PDLA) racemate stops at a high temperature or does not even start, leaving the remaining melt to crystallize into homochiral crystals (HC) or an SC–HC mixture on continuous cooling. To understand this intriguing phenomenon, we revisit the SC crystallization of both high- and low-molecular-weight PLLA/PDLA racemates. Based on differential scanning calorimetry (DSC), supplemented by optical microscopy and X-ray scattering, we concluded that what stops the growth of SC is the accumulation of the nearly pure enantiomer, either PDLA or PLLA, that is rejected from the SC ahead of its growth front. The excess enantiomer is a result of random compositional fluctuation present in the melt even if the average composition is 1:1. The situation is more favorable if the initial polymer is not fully molten or is brought up to just above the melting point where SC seeds remain, as proven by DSC and X-ray scattering. Moreover, we find that not only is SC growth poisoned by the locally pure enantiomer but also that at lower temperatures, the HC growth can be poisoned by the blend. This explains why SC growth, arrested at high temperatures, can resume at lower temperatures, along with the growth of HC. Furthermore, while some previous works attributed the incomplete SC crystallization to a problem of primary nucleation, we find that adding a specific SC-promoting nucleating agent does not help alleviate the problem of cessation of SC crystallization. This reinforces the conclusion that the main problem is in growth rather than in nucleation

    Investigation of backwashing effectiveness in membrane bioreactor (MBR) based on different membrane fouling stages

    Full text link
    © 2018 Elsevier Ltd In this study the effect of different fouling stages of hollow fiber membranes on effective backwashing length in MBR has been investigated. Computational fluid dynamics (CFD) is imported to simulate backwashing process. A multi-physics coupling model for free porous media flow, convective mass transfer and diluted species transport was established. The laser bijection sensors (LBS) were imported to monitor the backwashing solution position inside fiber lumen. Simulation results indicated that membrane fouling degree could change the velocity of backwash solution inside fiber lumen and make a further effect on effective backwash length. The signal variations of LBS are in accordance with the simulation results. The backwashing process can only play an active role when the filtration pressure is below the critical TMP. It can be concluded that backwash duration in industrial applications need to be set based on changes in TMP

    Impoundment of the Zipingpu reservoir and triggering of the 2008 Mw 7.9 Wenchuan earthquake, China

    Get PDF
    Impoundment of the Zipingpu reservoir (ZR), China, began in September 2005 and was followed 2.7 years later by the 2008 Mw 7.9 Wenchuan earthquake (WE) rupturing the Longmen Shan Fault (LSF), with its epicenter ~12 km away from the ZR. Based on the poroelastic theory, we employ three-dimensional finite element models to simulate the evolution of stress and pore pressure due to reservoir impoundment, and its effect on the Coulomb failure stress on the LSF. The results indicate that the reservoir impoundment formed a pore pressure front that slowly propagated through the crust with fluid diffusion. The reservoir loading induced either moderate or no increase of the Coulomb failure stress at the hypocenter prior to the WE. The Coulomb failure stress, however, grew ~9.3-69.1 kPa in the depth range of 1-8 km on the LSF, which may have advanced tectonic loading of the fault system by ~60-450 years. Due to uncertainties of fault geometry and hypocenter location of the WE, it is inconclusive whether impoundment of the ZR directly triggered the WE. However, a small event at the hypocenter could have triggered large rupture elsewhere on fault, where the asperities were weakened by the ZR. The microseismicity around the ZR also showed an expanding pattern from the ZR since its impoundment, likely associated with diffusion of a positive pore pressure pulse. These results suggest a poroelastic triggering effect (even if indirectly) of the WE due to the impoundment of the ZRThis project was supported in part by grants of NSFC 41090294 and 41374103, CEA LED2008A05, LED2013A04, and LED2009A02, NSF EAR 0911762 and EAR 0911466, and NASA ESI 1468758. Academic licensing for the Abaqus software was provided by Dassault Systemes, Simulia Inc. Chen Jiuhui of Institute of Geology, CEA provided the aftershock data of the Wenchuan earthquake. Ma Wentao of Institute of Geology, CEA provided the microseismicity data in the vicinity of the Zipingpu reservoir. This work was also partially supported by an NSF I/RD grant (EAR-1323052) for the corresponding author as a rotator program director at NSFPeer reviewe

    Morphology of shear-induced polymer cylindrites revealed by 3D optical imaging

    Get PDF
    Two-photon confocal laser microscopy was used to obtain three-dimensional (3D) images of the morphology of poly(lactic acid) after shear-induced crystallization. The necessary fluorescence contrast was achieved by doping the polymer with Nile Red. The dye gets partially rejected from the growing crystalline aggregates during their formation, thus creating a renderable high-low fluorescence boundary outlining the shape of the aggregates. Parallel-plate melt-shearing and pulling a glass fiber through the melt were used as the two methods to achieve shear-induced crystallization. This study focuses on the shape of the resulting cylindrites, i.e., large-diameter shish-kebabs. The first 3D images of polymer cylindrites show that, if far from boundaries, they are circular cylinders, highly regular after fiber pull, but less so after parallel-plate shear. In the latter case, the cylindrite reveals the trajectory of the foreign particle that had nucleated its growth. Interestingly, lateral growth of the cylindrites was found to accelerate toward the sample surface when approaching it, giving the cylindrite an elliptical cross section. Furthermore and surprisingly, in the case of fiber pull, a row of spherulites is nucleated at the polymer–substrate interface nearest to the fiber, aligned along the fiber axis and appearing ahead of the rest of the space-filling spherulites. Both the phenomena, elliptical cylindrites and row of spherulites, are attributed to negative pressure buildup peaking at the cylindrite growth front and at the nearby film surface caused by crystallization-induced volume contraction. The pressure and flow distribution in the system is confirmed by numerical simulation. The results illustrate the value of 3D imaging of crystalline morphology in polymer science and polymer processing industry

    Continuous spectrum of morphologies and phase behavior across the contact zone from Poly(L-lactide) to Poly(d-lactide): stereocomplex, homocrystal, and between

    Get PDF
    The enantiomeric ratio is a key factor affecting the crystallization behavior and morphology of poly-l-lactide/poly-d-lactide (PLLA/PDLA) blends. Despite a number of studies on crystallization of nonequimolar PLLA/PDLA blends, a full picture of the effect of the L/D ratio is still lacking. Here, we put the two enantiomers in contact and allow interdiffusion above the melting point of the stereocomplex crystal (SC) to prepare samples with a continuously changing L/D ratio from enantiopure PLLA (ratio 0/100) to enantiopure PDLA (100/0). Using polarized optical microscopy, atomic force microscopy, and microbeam X-ray diffraction, the continuous spectrum of morphologies and phase behaviors across the contact zone is investigated. The blend morphology shows clear evidence of “poisoning by purity” of SC crystallization at all blend compositions. The low birefringence of the 50/50 SC is found to be due to the meandering of broken edge-on lamellae. Its further decrease to near zero as L/D deviates further away from 50/50 is explained by transition from radial edge-on lamellae to fully random meandering lamellae, then to mixed flat-on lamellae, and finally to submicron-sized axialites. In comparison with the smooth and straight homocrystal (HC) lamellae of pure enantiomers, the lamellae in the blends often have serrated edges caused by pinning by rejected excess enantiomer acting as an impurity during lamellar growth. A feature of the binary phase diagram is pure enantiomers acting as an impurity to the SC and counter-enantiomer acting as an impurity to homocrystallization of the enantiomers. Crystallization was found to be most suppressed at 99% enantiomeric purity, where the amount of the counter-enantiomer is insufficient for creation of SC nuclei and HC growth is inhibited by the small amount of the enantio-impurity. These and other intriguing results are less likely to be noticed without the continuous composition gradient of the contact sample

    Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface

    Get PDF
    Light-emitting diodes based on halide perovskites have recently reached external quantum efficiencies of over 20%. However, the performance of visible perovskite light-emitting diodes has been hindered by non-radiative recombination losses and limited options for charge-transport materials that are compatible with perovskite deposition. Here, we report efficient, green electroluminescence from mixed-dimensional perovskites deposited on a thin (~1 nm) lithium fluoride layer on an organic semiconductor hole-transport layer. The highly polar dielectric interface acts as an effective template for forming high-quality bromide perovskites on otherwise incompatible hydrophobic charge-transport layers. The control of crystallinity and dimensionality of the perovskite layer is achieved by using tetraphenylphosphonium chloride as an additive, leading to external photoluminescence quantum efficiencies of around 65%. With this approach, we obtain light-emitting diodes with external quantum efficiencies of up to 19.1% at high brightness (>1,500 cd m−2)
    corecore