41 research outputs found

    Lifelong Embedding Learning and Transfer for Growing Knowledge Graphs

    Full text link
    Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.Comment: Accepted in the 37th AAAI Conference on Artificial Intelligence (AAAI 2023

    Precision Higgs physics at the CEPC

    Get PDF
    The discovery of the Higgs boson with its mass around 125 GeV by the ATLAS and CMS Collaborations marked the beginning of a new era in high energy physics. The Higgs boson will be the subject of extensive studies of the ongoing LHC program. At the same time, lepton collider based Higgs factories have been proposed as a possible next step beyond the LHC, with its main goal to precisely measure the properties of the Higgs boson and probe potential new physics associated with the Higgs boson. The Circular Electron Positron Collider~(CEPC) is one of such proposed Higgs factories. The CEPC is an e+ee^+e^- circular collider proposed by and to be hosted in China. Located in a tunnel of approximately 100~km in circumference, it will operate at a center-of-mass energy of 240~GeV as the Higgs factory. In this paper, we present the first estimates on the precision of the Higgs boson property measurements achievable at the CEPC and discuss implications of these measurements.Comment: 46 pages, 37 figure

    Improving Continual Relation Extraction by Distinguishing Analogous Semantics

    Full text link
    Continual relation extraction (RE) aims to learn constantly emerging relations while avoiding forgetting the learned relations. Existing works store a small number of typical samples to re-train the model for alleviating forgetting. However, repeatedly replaying these samples may cause the overfitting problem. We conduct an empirical study on existing works and observe that their performance is severely affected by analogous relations. To address this issue, we propose a novel continual extraction model for analogous relations. Specifically, we design memory-insensitive relation prototypes and memory augmentation to overcome the overfitting problem. We also introduce integrated training and focal knowledge distillation to enhance the performance on analogous relations. Experimental results show the superiority of our model and demonstrate its effectiveness in distinguishing analogous relations and overcoming overfitting.Comment: Accepted in the 61st Annual Meeting of the Association for Computational Linguistics (ACL 2023

    Identification of an Individualized Prognostic Signature Based on the RWSR Model in Early-Stage Bladder Carcinoma

    No full text
    Bladder cancer (BLCA) is the fourth common cancer among males in the United States, which is also the fourth leading cause of cancer-related death in old males. BLCA has a high recurrence rate, with over 50% of patients which has at least one recurrence within five years. Due to the complexity of the molecular mechanisms and heterogeneous cancer feature, BLCA clinicians find it hard to make an efficient management decision as they lack reliable assessment of mortality risk. Meanwhile, there is currently no screening suitable prognostic signature or method recommended for early detection, which is significantly important to early-stage detection and prognosis. In this study, a novel model, named the risk-weighted sparse regression (RWSR) model, is constructed to identify a robust signature for patients of early-stage BLCA. The 17-gene signature is generated and then validated as an independent prognostic factor in BLCA cohorts from GSE13507 and TCGA_BLCA datasets. Meanwhile, a risk score model is developed and validated among the 17-gene signature. The risk score is also considered an independent factor for prognosis prediction, which is confirmed through prognosis analysis. The Kaplan-Meier with the log-rank test is used to assess survival difference. Furthermore, the predictive capacity of the signature is proved through stratification analysis. Finally, an effective patient classification is completed by a combination of the 17-gene signature and stage information, which is for better survival prediction and treatment decisions. Besides, 11 genes in the signature, such as coiled-coil domain containing 73 (CCDC73) and protein kinase, DNA-activated, and catalytic subunit (PRKDC), are proved to be prognosis marker genes or strongly associated with prognosis and progress of other types of cancer in published literature already. As a result, this paper would more accurately predict a patient’s prognosis and improve surveillance in the clinical setting, which may provide a quantitative and reliable decision-making basis for the treatment plan

    Lifelong Embedding Learning and Transfer for Growing Knowledge Graphs

    No full text
    Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines

    Prediction of plant-derived xenomiRs from plant miRNA sequences using random forest and one-dimensional convolutional neural network models

    No full text
    Background: An increasing number of studies reported that exogenous miRNAs (xenomiRs) can be detected in animal bodies, however, some others reported negative results. Some attributed this divergence to the selective absorption of plant-derived xenomiRs by animals. Results: Here, we analyzed 166 plant-derived xenomiRs reported in our previous study and 942 non-xenomiRs extracted from miRNA expression profiles of four species of commonly consumed plants. Employing statistics analysis and cluster analysis, our study revealed the potential sequence specificity of plant-derived xenomiRs. Furthermore, a random forest model and a one-dimensional convolutional neural network model were trained using miRNA sequence features and raw miRNA sequences respectively and then employed to predict unlabeled plant miRNAs in miRBase. A total of 241 possible plant-derived xenomiRs were predicted by both models. Finally, the potential functions of these possible plant-derived xenomiRs along with our previously reported ones in human body were analyzed. Conclusions: Our study, for the first time, presents the systematic plant-derived xenomiR sequences analysis and provides evidence for selective absorption of plant miRNA by human body, which could facilitate the future investigation about the mechanisms underlying the transference of plant-derived xenomiR.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Constrained unsteady-state iris fast certification for lightweight training samples based on the scale change stable feature and multi-algorithm voting.

    No full text
    Aiming at the problem of fast certification for a constrained iris in the same category caused by the unstable iris features caused by the change of the iris acquisition environment and shooting status under lightweight training samples, a one-to-one fast certification algorithm for constrained unsteady-state iris based on the scale change stable feature and multi-algorithm voting is proposed. Scale change stable features are found by constructing an isometric differential Gaussian space, and a local binary pattern algorithm with extended statistics (ES-LBP), the Haar wavelet with over threshold detection and the Gabor filter algorithm with immune particle swarm optimization (IPSO) are used to represent the stable features as binary feature codes. Iris certification is performed by the Hamming distance. According to the certification results of three algorithms, the final result is obtained by multi-algorithm voting. Experiments with the JLU and CASIA iris libraries under the iris prerequisite conditions show that the correct recognition rate of this algorithm can reach a high level of 98% or more, indicating that this algorithm can improve the operation speed, accuracy and robustness of certification

    Saikosaponin A and Its Epimers Alleviate LPS-Induced Acute Lung Injury in Mice

    No full text
    The purpose of this work was to illustrate the effect of processing with vinegar on saikosaponins of Bupleurum chinense DC. (BC) and the protective effects of saikosaponin A (SSA), saikosaponin b1 (SSb1), saikosaponin b2 (SSb2), and saikosaponin D (SSD) in lipopolysaccharide (LPS)-induced acute lung injury (ALI) mice. We comprehensively evaluated the anti-inflammatory effects and potential mechanisms of SSA, SSb1, SSb2, and SSD through an LPS-induced ALI model using intratracheal injection. The results showed that SSA, SSb1, SSb2, and SSD significantly decreased pulmonary edema; reduced the levels of IL-6, TNF-α, and IL-1β in serum and lung tissues; alleviated pulmonary pathological damage; and decreased the levels of the IL-6, TNF-α, and IL-1β genes and the expression of NF-κB/TLR4-related proteins. Interestingly, they were similar in structure, but SSb2 had a better anti-inflammatory effect at the same dose, according to a principal component analysis. These findings indicated that it may not have been comprehensive to only use SSA and SSD as indicators to evaluate the quality of BC, especially as the contents of SSb1 and SSb2 in vinegar-processed BC were significantly increased
    corecore