91 research outputs found
Box-supervised Instance Segmentation with Level Set Evolution
In contrast to the fully supervised methods using pixel-wise mask labels,
box-supervised instance segmentation takes advantage of the simple box
annotations, which has recently attracted a lot of research attentions. In this
paper, we propose a novel single-shot box-supervised instance segmentation
approach, which integrates the classical level set model with deep neural
network delicately. Specifically, our proposed method iteratively learns a
series of level sets through a continuous Chan-Vese energy-based function in an
end-to-end fashion. A simple mask supervised SOLOv2 model is adapted to predict
the instance-aware mask map as the level set for each instance. Both the input
image and its deep features are employed as the input data to evolve the level
set curves, where a box projection function is employed to obtain the initial
boundary. By minimizing the fully differentiable energy function, the level set
for each instance is iteratively optimized within its corresponding bounding
box annotation. The experimental results on four challenging benchmarks
demonstrate the leading performance of our proposed approach to robust instance
segmentation in various scenarios. The code is available at:
https://github.com/LiWentomng/boxlevelset.Comment: 17 page, 4figures, ECCV202
Development Of Structural-functional Integrated Energy Storage Concrete With Innovative Macro-encapsulated PCM By Hollow Steel Ball
Phase change materials (PCMs) have great potential for applications in energy efficient buildings. In this study, an innovative method of macro-encapsulation of PCM using hollow steel balls (HSB) was developed and the thermal and mechanical performance of PCM-HSB concrete was examined. The macro-encapsulation system (PCM-HSB) was attached with a metal clamp (c) for better mechanical interlocking with the mortar matrix. The latent heat of PCM-HSB-c that can be acquired is approximately 153.1 J/g, which can be considered to rank highly among PCM composites. According to the self-designed thermal performance evaluation, the PCM–HSB-c concrete panel is capable of reducing and deferring the peak indoor temperature. The indoor temperature of the room model using PCM-HSB-c panels was significantly lower than the ones with normal concrete panels by a range of 3–6%. Furthermore, the test room using a higher PCM-HSB-c content demonstrated a greater ability to maintain a lower indoor room temperature for a longer period of time during heating cycles. In consideration of the mechanical properties, thermal performance and other aspects of cost factors, 50% and 75% PCM-HSB-c replacement levels are recommended in producing concrete
Sex differences in patients with COVID-19: a retrospective cohort study and meta-analysis
BACKGROUND: Accumulated evidence revealed that male was much more likely to higher severity and fatality by SARS-CoV-2 infection than female patients, but few studies and meta-analyses have evaluated the sex differences of the infection and progression of COVID-19 patients.
AIM: We aimed to compare the sex differences of the epidemiological and clinical characteristics in COVID-19 patients; and to perform a meta-analysis evaluating the severe rate, fatality rate, and the sex differences of the infection and disease progression in COVID-19 patients.
METHODS: We analyzed clinical data of patients in Changchun Infectious Hospital and Center, Changchun, Northeast China; and searched PubMed, Embase, Web of Science, and Cochrane Library without any language restrictions for published articles that reported the data of sex-disaggregated, number of severe, and death patients on the confirmed diagnosis of adult COVID-19 patients.
RESULTS: The pooled severe rate and fatality rate of COVID-19 were 22.7% and 10.7%. Male incidence in the retrospective study was 58.1%, and the pooled incidence in male was 54.7%.
CONCLUSION: The pooled severe rate in male and female of COVID-19 was 28.2% and 18.8%, the risky of severe and death was about 1.6folds higher in male compared with female, especially for older patients (> 50 y)
Comparative efficacy of six programmed cell death Protein-1 inhibitors as first-line treatment for advanced non-small cell lung cancer: a multicenter retrospective cohort study
The purpose of this study was to assess the comparative efficacy of six programmed cell death-1 inhibitors (nivolumab, pembrolizumab, sintilimab, tislelizumab, toripalimab, and camrelizumab) that have been used as first-line therapy for Chinese patients with advanced non-small cell lung cancer (NSCLC), which remains unclear. We determined the differences in efficacy by observing patient survival data, with the goal of informing future treatment options. Retrospective data analysis from June 2015 to April 2023 included 913 patients across six groups: nivolumab (123%, 13.5%), pembrolizumab (421%, 46.1%), sintilimab (239%, 26.1%), tislelizumab (64%, 7.0%), toripalimab (39%, 4.3%), and camrelizumab (27%, 3.0%). The median progression-free survival (PFS) for each group was 16.0, 16.1, 18.4, 16.9, 23.7, and 12.8 months, and the median overall survival (OS) was 33.7, 36.1, 32.5, not reached, 30.9 and 46.0 months for the nivolumab, sintilimab, pembrolizumab, tislelizumab, toripalimab, and camrelizumab groups, respectively. While differences existed in the objective response rates among groups (p < 0.05), there were no significant differences (all p > 0.05) in PFS or OS. The findings suggest comparable efficacy among these PD-1 inhibitors for NSCLC treatment, underscoring their collective suitability and aiding treatment decisions
Towards efficient photoinduced charge separation in carbon nanodots and TiO 2
In this work, photoinduced charge separation behaviors in non-long-chain-molecule-functionalized carbon nanodots (CDs) with visible intrinsic absorption (CDs-V) and TiO2 composites were investigated. Efficient photoinduced electron injection from CDs-V to TiO2 with a rate of 8.8 × 108 s−1 and efficiency of 91% was achieved in the CDs-V/TiO2 composites. The CDs-V/TiO2 composites exhibited excellent photocatalytic activity under visible light irradiation, superior to pure TiO2 and the CDs with the main absorption band in the ultraviolet region and TiO2 composites, which indicated that visible photoinduced electrons and holes in such CDs-V/TiO2 composites could be effectively separated. The incident photon-to-current conversion efficiency (IPCE) results for the CD-sensitized TiO2 solar cells also agreed with efficient photoinduced charge separation between CDs-V and the TiO2 electrode in the visible range. These results demonstrate that non-long-chain-molecule-functionlized CDs with a visible intrinsic absorption band could be appropriate candidates for photosensitizers and offer a new possibility for the development of a well performing CD-based photovoltaic system
Urinary <i>Eubacterium</i> sp. <i>CAG:581</i> Promotes Non-Muscle Invasive Bladder Cancer (NMIBC) Development through the ECM1/MMP9 Pathway
Background: Increasing evidence points to the urinary microbiota as a possible key susceptibility factor for early-stage bladder cancer (BCa) progression. However, the interpretation of its underlying mechanism is often insufficient, given that various environmental conditions have affected the composition of urinary microbiota. Herein, we sought to rule out confounding factors and clarify how urinary Eubacterium sp. CAG:581 promoted non-muscle invasive bladder cancer (NMIBC) development. Methods: Differentially abundant urinary microbiota of 51 NMIBC patients and 47 healthy controls (as Cohort 1) were first determined by metagenomics analysis. Then, we modeled the coculture of NMIBC organoids with candidate urinary Eubacterium sp. CAG:581 in anaerobic conditions and explored differentially expressed genes of these NMIBC tissues by RNA-Seq. Furthermore, we dissected the mechanisms involved into Eubacterium sp. CAG:581 by inducing extracellular matrix protein 1 (ECM1) and matrix metalloproteinase 9 (MMP9) upregulation. Finally, we used multivariate Cox modeling to investigate the clinical relevance of urinary Eubacterium sp. CAG:581 16S ribosomal RNA (16SrRNA) levels to the prognosis of 406 NMIBC patients (as Cohort 2). Results: Eubacterium sp. CAG:581 infection accelerated the proliferation of NMIBC organoids (p Eubacterium sp. CAG:581 infection via phosphorylating ERK1/2 in NMIBC organoids of Cohort 1. Excluding the favorable impact of potential contributing factors, the ROC curve of Cohort 2 manifested its 3-year AUC value as 0.79 and the cut-off point of Eubacterium sp. CAG:581 16SrRNA as 10.3 (delta CT value). Conclusion: Our evidence suggests that urinary Eubacterium sp. CAG:581 promoted NMIBC progression through the ECM1/MMP9 pathway, which may serve as the promising noninvasive diagnostic biomarker for NMIBC
Design for The Indoor Visible Light Communication Application System Based on LED Visible Light
This paper designs an indoor visible light communication application system based on LED. The system can modulate the original signal one or more times, move to a specific frequency band, transmit on the power line, in the LED terminal use this module to decode, restore the Ethernet signals. This design is applicable to the simplicity of the LED visible light communication applications, which provide the premise and guarantee for the construction of smart home network
Design for The Indoor Visible Light Communication Application System Based on LED Visible Light
This paper designs an indoor visible light communication application system based on LED. The system can modulate the original signal one or more times, move to a specific frequency band, transmit on the power line, in the LED terminal use this module to decode, restore the Ethernet signals. This design is applicable to the simplicity of the LED visible light communication applications, which provide the premise and guarantee for the construction of smart home network
- …