71 research outputs found

    Real-Time Marker Localization Learning for GelStereo Tactile Sensing

    Full text link
    Visuotactile sensing technology is becoming more popular in tactile sensing, but the effectiveness of the existing marker detection localization methods remains to be further explored. Instead of contour-based blob detection, this paper presents a learning-based marker localization network for GelStereo visuotactile sensing called Marknet. Specifically, the Marknet presents a grid regression architecture to incorporate the distribution of the GelStereo markers. Furthermore, a marker rationality evaluator (MRE) is modelled to screen suitable prediction results. The experimental results show that the Marknet combined with MRE achieves 93.90% precision for irregular markers in contact areas, which outperforms the traditional contour-based blob detection method by a large margin of 42.32%. Meanwhile, the proposed learning-based marker localization method can achieve better real-time performance beyond the blob detection interface provided by the OpenCV library through GPU acceleration, which we believe will lead to considerable perceptual sensitivity gains in various robotic manipulation tasks

    Discovery and structural characterization of a therapeutic antibody against coxsackievirus A10

    Get PDF
    9月20日,《科学》子刊《科学•进展》(Science Advances)刊出了我校夏宁邵教授团队发表的题为“Discovery and structural characterization of a therapeutic antibody against coxsackievirus A10”的研究论文。该研究首次发现手足口病重要病原体柯萨奇病毒A组10型(CVA10)不同类型病毒颗粒共有的优势中和表位,揭示了病毒颗粒及其与优势中和抗体复合物的精确三维结构,阐明了中和抗体的功能与作用机制,为新型疫苗和治疗药物的研制提供了重要的理论基础。 该研究首次揭示并描绘了CVA10的病毒颗粒及其优势中和表位的精确特征,发现了具有良好应用潜能的治疗性中和抗体,为新型疫苗和特异性治疗药物的研究提供了关键基础。 我校夏宁邵教授、程通副教授和美国加州大学洛杉矶分校纳米系统研究所Z. Hong Zhou(周正洪)教授、美国加州大学圣地亚哥分校颜晓东博士为该论文的共同通讯作者。我校博士生朱瑞、徐龙发博士后、郑清炳工程师、李少伟教授和美国加州大学洛杉矶分校崔彦祥博士后为该论文共同第一作者。【Abstract】Coxsackievirus A10 (CVA10) recently emerged as a major pathogen of hand, foot, and mouth disease and herpangina in children worldwide, and lack of a vaccine or a cure against CVA10 infections has made therapeutic antibody identification a public health priority. By targeting a local isolate, CVA10-FJ-01, we obtained a potent antibody, 2G8, against all three capsid forms of CVA10. We show that 2G8 exhibited both 100% preventive and 100% therapeutic efficacy against CVA10 infection in mice. Comparisons of the near-atomic cryo–electron microscopy structures of the three forms of CVA10 capsid and their complexes with 2G8 Fab reveal that a single Fab binds a border region across the three capsid proteins (VP1 to VP3) and explain 2G8’s remarkable cross-reactivities against all three capsid forms. The atomic structures of this first neutralizing antibody of CVA10 should inform strategies for designing vaccines and therapeutics against CVA10 infections.This work was supported by grants from the National Science and Technology Major Projects for Major New Drugs Innovation and Development (2018ZX09711003-005-003), the National Science and Technology Major Project of Infectious Diseases (2017ZX10304402-002-003), the National Natural Science Foundation of China (31670933 and 81801646), and the National Institutes of Health (R37-GM33050, GM071940, DE025567, and AI094386). We acknowledge the use of instruments at the Electron Imaging Center for Nanomachines supported by the University of California, Los Angeles and by instrumentation grants from NIH (1S10RR23057 and 1U24GM116792) and NSF (DBI-1338135 and DMR-1548924). 该研究获得了国家自然科学基金、新药创制国家科技重大专项、传染病防治国家科技重大专项和美国国立卫生研究院基金的资助

    Ho<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> Nanobelts Electrode for Highly Selective and Sensitive Detection of Cancer miRNAs

    No full text
    The design and engineering of effective electrode materials is critical in the development of electrochemical sensors. In the present study, Ho2O3-TiO2 nanobelts were synthesized by an alkaline hydrothermal process. The structure and morphology were investigated by X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) measurements. The Ho2O3-TiO2 nanobelts showed a distinctly enhanced (004) reflection peak and rough surfaces and were used for the electrochemical selective sensing of various cancer miRNAs, such as prostate cancer miR-141, osteosarcoma miR-21, and pancreatic cancer miR-1290. Voltammetric measurements showed an oxidation peak at +0.4, +0.2, and +1.53 V for the three different cancer biomarkers, respectively, with the detection limit as low as 4.26 aM. The results suggest that the Ho2O3-TiO2 nanobelts can be used as active materials to detect early cancers, for in vitro screening of anticancer drugs, and molecular biology research

    In-Hand Object Localization Using GelStereo Visuotactile Sensing

    No full text
    Cui S, Li Q, Cai Y, Wang S. In-Hand Object Localization Using GelStereo Visuotactile Sensing. Presented at the IROS2021- Dexterous manipulation workshop, Prague.In-hand object localization has always been a critical but difficult aspect of dexterous robotic manipulation. We attempt to address this issue in this paper through the use of point cloud registration techniques. Specifically, the grasping pose is estimated by registering the high-resolution 3D contact point cloud sensed by a novel GelStereo tactile sensor with the object template point cloud. Extensive qualitative and quantita- tive analyses of in-hand localization and insertion experiments of small parts are performed on our robot platform. The experimental results verify the accuracy and robustness of the proposed in-hand object localization pipeline

    Decision-Making of Irrigation Scheme for Soybeans in the Huaibei Plain Based on Grey Entropy Weight and Grey Relation–Projection Pursuit

    No full text
    To provide a scientific reference for formulating an effective soybean irrigation schedule in the Huaibei Plain, potted water deficit experiments with nine alternative irrigation schemes during the 2015 and 2016 seasons were conducted. An irrigation scheme decision-making index system was established from the aspects of crop water consumption, crop growth process and crop water use efficiency. Moreover, a grey entropy weight method and a grey relation&ndash;projection pursuit model were proposed to calculate the weight of each decision-making index. Then, nine alternative schemes were sorted according to the comprehensive grey relation degree of each scheme in the two seasons. The results showed that, when using the entropy weight method or projection pursuit model to determine index weight, it was more direct and effective to obtain the corresponding entropy value or projection eigenvalue according to the sequence of the actual study object. The decision-making results from the perspective of actual soybean growth responses at each stage for various irrigation schemes were mostly consistent in 2015 and 2016. Specifically, for an integrated target of lower water consumption and stable biomass yields, the scheme with moderate-deficit irrigation at the soybean branching stage or seedling stage and adequate irrigation at the flowering-podding and seed filling stages is relatively optimal

    Simulated Assessment of Summer Maize Drought Loss Sensitivity in Huaibei Plain, China

    No full text
    In an agricultural drought risk system, crop drought loss sensitivity evaluation is a fundamental link for quantitative agricultural drought loss risk assessment. Summer maize growth processes under various drought patterns were simulated using the Cropping System Model (CSM)-CERES-maize, which was calibrated and validated based on pit experiments conducted in the Huaibei Plain during 2016 and 2017 seasons. Then S-shaped maize drought loss sensitivity curve was built for fitting the relationship between drought hazard index intensity at a given stage and the corresponding dry matter accumulation and grain yield loss rate, respectively. Drought stress reduced summer maize evapotranspiration, dry matter, and yield accumulation, and the reductions increased with the drought intensity at each stage. Moreover, the losses caused by drought at different stages were significantly different. When maize plants were exposed to a severe water deficit at the jointing stage, the dry matter and grain yield formation were greatly affected. Therefore, maize growth was more sensitive to drought stress at the jointing stage when the stress was serious. Furthermore, when plants encountered a relatively slight drought during the seedling or jointing stage, which represented as a lower soil water deficit intensity, the grain yield loss rates approached the maximum for the sensitivity curves of these two stages. Therefore, summer maize tolerance to water deficit at the seedling and jointing stages were weak, and yield formation was more sensitive to water deficit during these two stages when the deficit was relatively slight

    Estimation of maize evapotraspiration under drought stress - A case study of Huaibei Plain, China.

    No full text
    Given the importance and complexity of crop evapotranspiration estimation under drought stress, an experiment tailored for maize under drought stress was completed using six sets of large-scale weighing lysimeters at the Xinmaqiao Comprehensive Experimental Irrigation and Drainage Station, Anhui Province, China. Our aim was to analyze maize evapotranspiration under different drought conditions. Based on estimates of maize evapotranspiration under no drought stress using the dual crop coefficient approach, we optimized and calibrated basic crop coefficients Kcbini, Kcbmid, Kcbend, and the maximum crop coefficient Kcmax using a genetic algorithm. Measurements of solar radiation at the experimental station were used to derive the empirical parameters a and b from the Angstrom formula through the genetic algorithm, and then evapotranspiration was calculated for the reference crop (ET0). We then estimated the maize evapotranspiration under drought using the dual crop coefficient approach. The results indicated that a slight water deficit during the earlier stage of vegetative growth may stimulate the maize homeostatic mechanism and increase tolerance to drought stress in later growth periods. Maize evapotranspiration significantly decreased if drought stress continued into the elongation stage, and the same degree of drought stress had a greater influence on the middle and later stages of vegetative and reproductive growth. The calibrated results for Kcbini, Kcbmid, Kcbend, and Kcmax were 0.155, 1.218, 0.420 and 1.497 respectively. We calculated the root-mean-square error (RMSE), mean absolute error (MAE), and mean relative error (MRE) of maize evapotranspiration under no drought stress over the full growing season using a dual crop coefficient approach, and the results were 1.33 mm/day, 0.99 mm/day, and 1.30%, respectively, or 18.40%, 17.50%, and 91.11% lower than results using the recommended coefficients. The RMSE, MAE, and MRE results for maize under drought stress during two full growth periods were 1.18 mm/day, 0.98 mm/day, and 13.92%, respectively. These results were higher than maize without drought stress, but better than the estimated results based on FAO-56 recommended values. Therefore, maize evapotranspiration estimation under drought stress using the dual crop coefficient approach and genetic algorithm was reasonable and reliable. This study provides a theoretical basis for developing suitable regional irrigation programs and decreasing losses due to agricultural drought
    corecore