9 research outputs found
Buddhist monasteries facilitated landscape conservation on the Qinghai-Tibetan Plateau
Context:
The Sanjiangyuan region of the Qinghai-Tibetan Plateau—also known as the “Three Rivers’ Headwaters”—is the origin of the Yellow, Yangtze, and Mekong Rivers and therefore the key water source for hundreds of millions of downstream residents. Protecting this region’s ecosystems is a key priority for sustainable development in China and Asia. An important social dimension of Sanjiangyuan is the long-established and widespread presence of Tibetan Buddhism, particularly as manifested in the large number of monasteries throughout the region. However, the influence of cultural factors on environmental change remains largely understudied here. /
Objective:
We focus on two types of spatial associations—point-point and point-area features—to quantitatively investigate the effects of Buddhist monasteries on land use/cover change (LUCC) in surrounding landscapes. /
Methods:
We conduct a spatially-explicit analysis of Sanjiangyuan for two periods, 1990–2000 and 2010–2015, to identify and quantify the influence of the presence and spatial distributions of Buddhist monasteries on LUCC compared to village communities that lack monasteries. /
Results:
We found that the presence of monasteries is highly correlated with the preservation of natural ecosystems, specifically of grasslands and forests. Within monastery buffer zones with radii between 1 and 10 km, 7.13–9.30% more grassland area and 7.14–7.47% more forest area remained around monasteries compared to villages. This contrast decreased with increasing distance to the monastery/village. Overall, built-up areas were also much smaller around monasteries than around villages, while unused land was more commonly transformed to forests and grasslands around monasteries. /
Conclusions:
These findings strongly support the idea that Buddhist culture, as manifested through its physical institutions and communities, are instrumental in achieving desired landscape conservation outcomes
The Effects of Terrain Factors and Cultural Landscapes on Plateau Forest Distribution in Yushu Tibetan Autonomous Prefecture, China
The Yushu Tibetan Autonomous Prefecture is a typical Tibetan plateau area, and its ecological environment is very fragile. It is necessary to explore the terrain and cultural factors for the protection of the local ecological environment. We mainly investigated and quantified the effect of terrain factors and two typical plateau cultural landscapes (temples and villages) on the spatiotemporal variation characteristics of four types of forest landscape in the Yushu Tibetan Autonomous Prefecture from 1990 to 2015 using remote sensing (RS) and geographic information system (GIS) technology. The results showed that, under the influence of terrain factors, forest landscapes were only distributed in places with an altitude of 5055 meters above sea level (masl) to 6300 masl, with a slope of 0–27°, and the largest distribution area was shrubbery. The area of the forest decreased with the increase in altitude, and it first rose and then decreased with the increase in slope. Regression analysis results showed that the influence of altitude on closed forest land and open forest land followed a polynomial function, while that on shrubbery followed a logarithmic function, and the impact of slope on the three forest landscapes followed the amplitude version of a Gaussian peak function. Considering cultural factors, temples and villages did not determine the forest distribution in the same way as natural factors do, but they motivated the amount of forest over spatiotemporal scales. Temples had a greater influence on forest protection than villages, and this positive impact was stronger within 6 km. The area of forest distributed around the temple accounts for more than 45.67% of the total forest area, and this area has not changed significantly in 25 years. In summary, altitude and slope affect the natural distribution of the forest, and temples affect the scale of forest distribution. These results reveal the impact of terrain factors and cultural landscapes on forest distribution and could motivate an even more effective management for sustainable forest development