66 research outputs found

    Research and Implementation of Web Service Inheritance and Interface Web Service

    Get PDF
    Web Service (WS) and SOA (Service-Oriented Ar-chitecture) are now widely used. The most important application of SOA is connecting various business systems that automate an enterprise\u27s business processes. A new extension of Web Service definition and implementation-Inheritance of web service is pro-posed in this paper, just like the traditional inheriting mechanism of classes and interfaces in Object-oriented programming. It makes web service development and deployment more flexible, extendable and re-usable, and brings new thoughts and strengths to the implementation of SOA

    Achieving Customer-Provider Strategic Alignment in IT Outsourcing

    Get PDF

    Population-average mediation analysis for zero-inflated count outcomes

    Full text link
    Mediation analysis is an increasingly popular statistical method for explaining causal pathways to inform intervention. While methods have increased, there is still a dearth of robust mediation methods for count outcomes with excess zeroes. Current mediation methods addressing this issue are computationally intensive, biased, or challenging to interpret. To overcome these limitations, we propose a new mediation methodology for zero-inflated count outcomes using the marginalized zero-inflated Poisson (MZIP) model and the counterfactual approach to mediation. This novel work gives population-average mediation effects whose variance can be estimated rapidly via delta method. This methodology is extended to cases with exposure-mediator interactions. We apply this novel methodology to explore if diabetes diagnosis can explain BMI differences in healthcare utilization and test model performance via simulations comparing the proposed MZIP method to existing zero-inflated and Poisson methods. We find that our proposed method minimizes bias and computation time compared to alternative approaches while allowing for straight-forward interpretations.Comment: 34 pages, 2 figures, 4 tables, 49 pages of Supplemental material, 2 supplemental figure

    Correction Self-Healing and Injectable Hydrogel for Matching Skin Flap Regeneration

    Get PDF
    Several images in Figure 3, Figure 4, and Figure S7, Supporting Information, accidentally presented duplicate samples in the original article. The correct figures are presented below. The authors apologize for any inconvenience this may have caused.Peer reviewe

    Self-healing and injectable hydrogel for matching skin flap regeneration

    Get PDF
    The fabrication of highly biocompatible hydrogels with multiple unique healing abilities for the whole healing process, for example, multifunctional hydrogels with injectable, degradation, antibacterial, antihypoxic, and wound healing–promoting properties that match the dynamic healing process of skin flap regeneration, is currently a research challenge. Here, a multifunctional and dynamic coordinative polyethylene glycol (PEG) hydrogel with mangiferin liposomes (MF‐Lip@PEG) is developed for clinical applications through Ag–S coordination of four‐arm‐PEG‐SH and Ag+. Compared to MF‐PEG, MF‐Lip@PEG exhibits self‐healing properties, lower swelling percentages, and a longer endurance period. Moreover, the hydrogel exhibits excellent drug dispersibility and release characteristics for slow and persistent drug delivery. In vitro studies show that the hydrogel is biocompatible and nontoxic to cells, and exerts an outstanding neovascularization‐promoting effect. The MF‐Lip@PEG also exhibits a strong cytoprotective effect against hypoxia‐induced apoptosis through regulation of the Bax/Bcl‐2/caspase‐3 pathway. In a random skin flap animal model, the MF‐Lip@PEG is injectable and convenient to deliver into the skin flap, providing excellent anti‐inflammation, anti‐infection, and proneovascularization effects and significantly reducing the skin flap necrosis rate. In general, the MF‐Lip@PEG possesses outstanding multifunctionality for the dynamic healing process of skin flap regeneration.Peer reviewe

    Inefficient Translocation of Preproinsulin Contributes to Pancreatic ÎČ Cell Failure and Late-onset Diabetes

    Get PDF
    Among the defects in the early events of insulin biosynthesis, proinsulin misfolding and endoplasmic reticulum (ER) stress have drawn increasing attention as causes of ÎČ cell failure. However, no studies have yet addressed potential defects at the cytosolic entry point of preproinsulin into the secretory pathway. Here, we provide the first evidence that inefficient translocation of preproinsulin (caused by loss of a positive charge in the n region of its signal sequence) contributes to ÎČ cell failure and diabetes. Specifically, we find that, after targeting to the ER membrane, preproinsulin signal peptide (SP) mutants associated with autosomal dominant late-onset diabetes fail to be fully translocated across the ER membrane. The newly synthesized, untranslocated preproinsulin remains strongly associated with the ER membrane, exposing its proinsulin moiety to the cytosol. Rather than accumulating in the ER and inducing ER stress, untranslocated preproinsulin accumulates in a juxtanuclear compartment distinct from the Golgi complex, induces the expression of heat shock protein 70 (HSP70), and promotes ÎČ cell death. Restoring an N-terminal positive charge to the mutant preproinsulin SP significantly improves the translocation defect. These findings not only reveal a novel molecular pathogenesis of ÎČ cell failure and diabetes but also provide the first evidence of the physiological and pathological significance of the SP n region positive charge of secretory proteins

    Self‐Healing and Injectable Hydrogel for Matching Skin Flap Regeneration

    Get PDF
    The fabrication of highly biocompatible hydrogels with multiple unique healing abilities for the whole healing process, for example, multifunctional hydrogels with injectable, degradation, antibacterial, antihypoxic, and wound healing–promoting properties that match the dynamic healing process of skin flap regeneration, is currently a research challenge. Here, a multifunctional and dynamic coordinative polyethylene glycol (PEG) hydrogel with mangiferin liposomes (MF-Lip@PEG) is developed for clinical applications through Ag–S coordination of four-arm-PEG-SH and Ag+. Compared to MF-PEG, MF-Lip@PEG exhibits self-healing properties, lower swelling percentages, and a longer endurance period. Moreover, the hydrogel exhibits excellent drug dispersibility and release characteristics for slow and persistent drug delivery. In vitro studies show that the hydrogel is biocompatible and nontoxic to cells, and exerts an outstanding neovascularization-promoting effect. The MF-Lip@PEG also exhibits a strong cytoprotective effect against hypoxia-induced apoptosis through regulation of the Bax/Bcl-2/caspase-3 pathway. In a random skin flap animal model, the MF-Lip@PEG is injectable and convenient to deliver into the skin flap, providing excellent anti-inflammation, anti-infection, and proneovascularization effects and significantly reducing the skin flap necrosis rate. In general, the MF-Lip@PEG possesses outstanding multifunctionality for the dynamic healing process of skin flap regeneration.</p

    Solvated inverse vulcanisation by photopolymerisation

    Get PDF
    Inverse Vulcanisation (IV) under neat reaction conditions (without solvent) has enabled the research and development of the fundamental chemistry as well as the generation of unique sulfur-rich polymers with unprecedented properties. However, such bulk polymerisation can be problematic, especially with high molecular weight. The energetics of the thermal polymerisation process, combined with poor heat control of solvent-free polymerisation, cause risks of dangerous auto-acceleration if the process is scaled up. The required high temperatures (>160 °C or 135 °C even with catalysts), exceed the boiling point of most commonplace organic solvents, preventing implementation of solvents for IV under thermal conditions. We report here a photo-induced IV polymerisation in solvent at room temperature. The reactions proceed smoothly and efficiently with excellent yields, despite the potential negative factors of reflection, refraction, and low absorption intensity of light by these organic solvents, opening an attractive avenue for the preparation of functional sulfur-rich polymers as well as their potential applications. The extension of crosslinkers to the value-added C5 fraction of industrial byproduct and ÎČ-carotene showcase the benefit of this low temperature protocol. Mechanistic study reveals that the moisture in both substrates and solvents might play a key role for the generation of toxic H2S by-product in IV reaction under thermal conditions, with photopolymerisation remaining un-affected. This protocol not only extensively expands the scope of crosslinkers for the IV reaction together with resultant polymers, but also provides a potential scale-up route for industrial application by avoiding the generation of toxic H2S by-product and possible explosion risk with high temperature

    Carbon Nanotubes Enhance Cytotoxicity Mediated by Human Lymphocytes In Vitro

    Get PDF
    With the expansion of the potential applications of carbon nanotubes (CNT) in biomedical fields, the toxicity and biocompatibility of CNT have become issues of growing concern. Since the immune system often mediates tissue damage during pathogenesis, it is important to explore whether CNT can trigger cytotoxicity through affecting the immune functions. In the current study, we evaluated the influence of CNT on the cytotoxicity mediated by human lymphocytes in vitro. The results showed that while CNT at low concentrations (0.001 to 0.1 ”g/ml) did not cause obvious cell death or apoptosis directly, it enhanced lymphocyte-mediated cytotoxicity against multiple human cell lines. In addition, CNT increased the secretion of IFN-Îł and TNF-α by the lymphocytes. CNT also upregulated the NF-ÎșB expression in lymphocytes, and the blockage of the NF-ÎșB pathway reduced the lymphocyte-mediated cytotoxicity triggered by CNT. These results suggest that CNT at lower concentrations may prospectively initiate an indirect cytotoxicity through affecting the function of lymphocytes
    • 

    corecore