
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ICEB 2010 Proceedings International Conference on Electronic Business
(ICEB)

Winter 12-1-2010

Research and Implementation of Web Service Inheritance and Research and Implementation of Web Service Inheritance and

Interface Web Service Interface Web Service

Jinhong Cui

Wang Xu

Follow this and additional works at: https://aisel.aisnet.org/iceb2010

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in ICEB 2010 Proceedings by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301389107?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2010
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2010?utm_source=aisel.aisnet.org%2Ficeb2010%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Jinhong Cui

RESEARCH AND IMPLEMENTATION OF WEB SERVICE
INHERITANCE AND INTERFACE WEB SERVICE

Jinhong Cui, Department of Information Management, School of Information
Technology & Management Engineering, University of International Business and

Economics, Beijing, China.
E-mail: cjh1616@126.com

Xu Wang, IBM CDL, Beijing, China.
E-mail: xuwang@ibm.com.cn

Abstract

Web Service (WS) and SOA (Service-Oriented
Ar-chitecture) are now widely used. The most
important application of SOA is connecting various
business systems that automate an enterprise's
business processes. A new extension of Web
Service definition and implementation-Inheritance
of web service is pro-posed in this paper, just like
the traditional inheriting mechanism of classes and
interfaces in Object-oriented programming. It
makes web service development and deployment
more flexible, extendable and re-usable, and brings
new thoughts and strengths to the implementation
of SOA.

1. Introduction

Web Service (WS) and SOA (Service-Oriented
Ar-chitecture) are now widely used. The most
important application of SOA is connecting various
business sys-tems that automate an enterprise's
business processes. SOA with Web services
enables the development of services that
encapsulate business functions and that are easily
accessible from any other service. The
com-bination of Web services and SOA provides a
rapid integration solution that more quickly and
easily aligns investments and corporate strategies
by focusing on shared data and reusable services
rather than proprie-tary integration of products.
In object-oriented programming languages such as
C++ and Java, by introducing Class inheritance and
interface, greatly enhanced the flexibility,
readability of source code, and significantly
improve the code reusability.
This paper introduces the concept of Web services
inheritance, as well as Interface Web services. Web
services will be mapped to class or interface of the
ob-ject-oriented programming language. This
approach makes Web services programming more
flexible and greatly improve scalability of current
web service.

2. Mechanism of Web Service
Inheritance

In this paper, Inheritance of web service is
proposed just like the traditional inheriting
mechanism of classes and interfaces in
Object-oriented programming.
It provides a novel way for web service design and
development. It allows web service inheritance so
to maximize reuse existing features/methods of
web ser-vices. Users only need to focus on the
fea-tures/methods/interfaces differentiation of the
new web services. It is more flexible, extensible
and reusable. It is web service level integration,
through the use of corresponding code generation
tool of IDE(e.g., Eclipse plugin), users don't have
to know the details of the super web services.

2.1 Inheritance of web service

Object-oriented programming allows classes to
in-herit commonly used data and methods from
other classes. These inherited and inheriting classes
are called the superclass and the subclasses
respectively.
As described in Figure 1, in this paper, web service
(web service 1) with commonly used methods and
data are called the superwebservice, and those (web
service 2 and 3) inherited from the superwebservice
are called subwebservice.

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

69

Jinhong Cui

Figure 1. Inheritance of web service

The subwebservice can override the methods
defini-tion in the superwebservices. As described in
the bel-lowing diagram, when web client calls the
method A that is not overridden by web service 2,
this request can be forwarded to the
superwebservice web service 1, and the method A
in web services 1 will be called and the result will
also be forwarded by web service 2 to the web
client (referring to Figure 2). Web service 2 can
also redirect the client’s web request directly to
web service 1 as shown in Figure 3.

Figure 2. Proxy model of web service
inheritance

Figure 3. Redirection model of web service
inheritance

Subwebservice can also add new methods to extend
the functions of the existing superwebservice.
Just like Object-oriented C++ programming,
sub-webservice can inherit from multiple
superwebservice as described in Figure 4. Further
more, subwebservice can also be limited to only be
able to inherit from only one superwebservice like
Java does.

Web Service 1

Web Service 3

Web Service 2

Figure 4. Multiple inherit of web service

2.2 Interface web service

Just like Object-oriented programming, a so-called
interface web service can be introduced to
guarantee the desired web methods be generated in
its implemen-tation or subwebservice as described
in Figure 5.
Actually, the so-called interface web service is just
empty methods definition set without
implementation, just like the abstract methods
definition in class.

Figure 5. Interface web service

As described in the Figure 6, web service can also
implement multiple interface web services.

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

70

Jinhong Cui

Figure 6. Web service with multiple interface

3. Implementation

Introduce the paper with an abstract of
approximately 100 words. Begin in the left column
with centered heading “Abstract” set above the
single-spaced abstract text. The abstract should
properly describe the findings or arguments
presented in the paper.
There is A free weather forecast Web service from
internet, which defines a method of inquiry weather
GetWeather, the main part of the Web service
description of it as bellowing:

<wsdl:message name="GetWeatherSoapIn">

 <wsdl:part name="parameters" element="tns:GetWeather" />

 </wsdl:message>

 <wsdl:message name="GetWeatherSoapOut">

 <wsdl:part name="parameters"

element="tns:GetWeatherResponse" />

 </wsdl:message>

 <wsdl:portType name="WeatherSoap">

 <wsdl:operation name="GetWeather">

 <wsdl:documentation

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:input message="tns:GetWeatherSoapIn" />

 <wsdl:output message="tns:GetWeatherSoapOut" />

 </wsdl:operation>

 </wsdl:portType>

This above weather forecast web service is needed
to be extended to support Fahrenheit and Celsius
temperature conversion function, and the
description of the interface web service
convertTemperature used to extend the weather

forecast Web service as bellowing:

<wsdl:message name="c2FRsp">

 <wsdl:part element="impl:c2FRsp" name="parameters"/>

 </wsdl:message>

 <wsdl:message name="f2CRsp">

 <wsdl:part element="impl:f2CRsp" name="parameters"/>

 </wsdl:message>

 <wsdl:message name="f2CRequest">

 <wsdl:part element="impl:f2C" name="parameters"/>

 </wsdl:message>

 <wsdl:message name="c2FRequest">

 <wsdl:part element="impl:c2F" name="parameters"/>

 </wsdl:message>

 <wsdl:portType name="ConvertTemperature">

 <wsdl:operation name="c2F">

 <wsdl:input message="impl:c2FRequest"

name="c2FRequest"/>

 <wsdl:output message="impl:c2FRsp" name="c2FRsp"/>

 </wsdl:operation>

 <wsdl:operation name="f2C">

 <wsdl:input message="impl:f2CRequest"

name="f2CRequest"/>

 <wsdl:output message="impl:f2CRsp" name="f2CRsp"/>

 </wsdl:operation>

 </wsdl:portType>

In the above web service description, c2F and f2C
methods will be added to the original weather
forecast Web service. As shown in Figure 7, we
can define a new combineWeather services,
including weather forecasts function inherited from
the original Web service GetWeather, as well as
c2F and f2C methods from the definition of Web
services interface convertTemperature.

Figure 7. Sample web service

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

71

Jinhong Cui

In the implementation of this new combineWeather
services, GetWeather method can be inherited from
its parent web service to obtain weather
information. If use proxy model, combineWeather
services can also modify the result gotten from the
WeatherSoap web service and return the modified
weather information to the client, and c2F and
f2C methods will be implemented in
CombineWeather web service. The description of
the new CombineWeather Web service as
bellowing:

<wsdl:portType name="combineWeather">

 <wsdl:operation name="GetWeather">

 <wsdl:documentation

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:input message="tns:GetWeatherSoapIn" />

 <wsdl:output message="tns:GetWeatherSoapOut" />

</wsdl:operation>

<wsdl:operation name="c2F">

 <wsdl:input message="impl:c2FRequest"

name="c2FRequest"/>

 <wsdl:output message="impl:c2FRsp" name="c2FRsp"/>

 </wsdl:operation>

 <wsdl:operation name="f2C">

 <wsdl:input message="impl:f2CRequest"

name="f2CRequest"/>

 <wsdl:output message="impl:f2CRsp" name="f2CRsp"/>

 </wsdl:operation>

 </wsdl:portType>

4. IDE extension

Traditional web service IDE (Integrated
develop-ment environment) can be enhanced to
support web service inheritance and interface web
service.
When user needs to inherit one or more web
service or implement one or more interface web
service , he/she just need to give the URLs of the
description of them, and specify if proxy Mode or
redirect mode will be used; then, the user can also
choose to over-ride some methods from its parent
Web service. Then the enhanced IDE will
automatically generate the frame-work of the code
of these methods, for those un-over-ride methods,
IDE will automatically generate the web service
code according to user-chosen inherited model.
As shown in Figure 8, IDE can also generate the
code framework for methods defined in according
interface definitions.
The same as current popular Web services
inte-grated development environment, IDE can also
auto-matically generate web service description file
for the new web service based on the description
file of its parent web service and implemented
interface web services.

Figure 8. Web service IDE

5. Summary

Through the introduction of Web service
inheritance and Interface Web service, this paper
extend the web service definition; make web
service definition more flexible, extendable and
reusable, and bring new thoughts and strengths to
the development and imple-mentation of SOA.
It makes web service more like remote classes or
in-terface as the traditional Object-oriented
program-ming, and bring more features and
advantages of Ob-ject-oriented mechanism into
web service and SOA design and development. It
allows web service inheri-tance so to maximize
reuse existing features/methods of web services.
Developers only need to focus on the differentiated
features/methods/interfaces of the new web
services and don't have to learn the details of the
super web services.

References

[1] M. Gudgin, M. Hadley, N. Mendelsohn et al.

SOAP Version 1.2 Parts 1–2. W3C
Recommendation, World Wide Web
Consortium, June 2003.

[2] E. Christensen, F. Curbera, G. Meredith et al.
Web Services Descrip-tion Language
(WSDL) 1.1. W3C Note, World Wide Web
Consortium, March 2001. (A W3C
Recommendation for WSDL 2.0 is currently
pending.).

[3] D. Duce. Portable Network Graphics (PNG)
Specification (Second Edition). W3C
Recommendation, World Wide Web
Consortium, November 2004.

[4] D. L. McGuinness & F. van Harmelen. OWL
Web Ontology Lan-guage Overview. W3C
Recommendation, World Wide Web
Consor-tium, February 2004.

[5] C. Szyperski. Component software: Beyond
Object-oriented programming.

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

72

Jinhong Cui

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

Addison-Wesley, 1998.
[6] Nabor C. Mendonça, José Airton F. Silva,

Ricardo O. Anido. Client-side selection of
replicated web services: An empirical
assessment. Journal of Systems and Software,
August 2008, 81(8), pp.1346-1363

[7] Andres Quiroz, Manish Parashar. A
framework for distributed content-based web
services notification in Grid systems. Future
Generation Computer Systems, May 2008,
24(5), pp.452-459

[8] Serena Pastore. The service discovery
methods issue: A web services UDDI
specification framework integrated in a grid
environment. Journal of Network and
Computer Applications, April 2008, 31(2),
pp.93-107

[9] Zakaria Maamar, Djamal Benslimane,
Philippe Thiran, Chirine Ghedira, Schahram
Dustdar, Subramanian Sattanathan. Towards
a con-text-based multi-type policy approach
for Web services composition. Data &
Knowledge Engineering, August 2007, 62(2),
pp.327-351

[10] Sangyoon Oh, Geoffrey C. Fox. Optimizing
Web Service messaging performance in
mobile computing. Future Generation
Computer Systems, May 2007, 23(4),
pp.623-632

[11] Claudio Guidi, Roberto Lucchi, Manuel
Mazzara. A Formal Framework for Web
Services Coordination. Electronic Notes in
Theoretical Computer Science, 26 June 2007,
180(2),pp. 55-70

[12] Wil M.P. van der Aalst, Boualem Benatallah,
Fabio Casati, Francisco Curbera, Eric
Verbeek. Business process management:
Where business processes and web services
meet. Data & Knowledge Engineering, April
2007, 61(1), pp.1-5

[13] I.E. Foukarakis, A.I. Kostaridis, C.G. Biniaris,
D.I. Kaklamani, I.S. Venieris. Webmages:
An agent platform based on web services.
Computer Communications, 2 February 2007,
30(3), pp.538-545

[14] Therani Madhusudan, N. Uttamsingh. A
declarative approach to composing web
services in dynamic environments. Decision

Support Systems, January 2006, 41(2),
pp.325-357

[15] Zakaria Maamar. On coordinating
personalized composite web services[J].
Information and Software Technology, July
2006, 48(7), pp.540-548

[16] San-Yih Hwang; Ee-Peng Lim;
Chien-Hsiang Lee; Cheng-Hung Chen. On
Composing a Reliable Composite Web
Service: A Study of Dynamic Web Service
Selection. IEEE International Conference on
Web Services, 2007, 9-13 July 2007, pp.184 -
191

73

	Research and Implementation of Web Service Inheritance and Interface Web Service
	tmp.1582520349.pdf.qacIj

