16 research outputs found

    Theoretical Study on the Mechanism of Hydrogen Donation and Transfer for Hydrogen-Donor Solvents during Direct Coal Liquefaction

    No full text
    As a country that is poor in petroleum yet rich in coal, it is significant for China to develop direct coal liquefaction (DCL) technology to relieve the pressure from petroleum shortages to guarantee national energy security. To improve the efficiency of the direct coal liquefaction process, scientists and researchers have made great contributions to studying and developing highly efficient hydrogen donor (H-donor) solvents. Nevertheless, the details of hydrogen donation and the transfer pathways of H-donor solvents are still unclear. The present work examined hydrogen donation and transfer pathways using a model H-donor solvent, tetralin, by density functional theory (DFT) calculation. The reaction condition and state of the solvent (gas or liquid) were considered, and the specific elementary reaction routes for hydrogen donation and transfer were calculated. In the DCL process, the dominant hydrogen donation mechanism was the concerted mechanism. The sequence of tetralin donating hydrogen atoms was α-H (C1⁻H) > δ-H (C4⁻H) > β-H (C2⁻H) > γ-H (C3⁻H). Compared to methyl, it was relatively hard for benzyl to obtain the first hydrogen atom from tetralin, while it was relatively easy to obtain the second and third hydrogen atoms from tetralin. Comparatively, it was easier for coal radicals to capture hydrogen atoms from the H-donor solvent than to obtain hydrogen atoms from hydrogen gas

    Influence of Alkaline-Thermal Pretreatment on High-Solids Anaerobic Digestion of Dewatered Activated Sludge

    Get PDF
    The influence of alkaline (23.77 mg NaOH/g total solid), thermal (134.95 °C), and combined alkaline-thermal pretreatment on parameters of dewatered activated sludge (DAS) during high-solids anaerobic digestion was investigated. Soluble chemical oxygen demand (SCOD), soluble proteins, and VFAs (volatile fatty acids) concentrations were significantly higher (by two-fold) in pretreated DAS samples than in the control. During subsequent anaerobic digestion, the concentrations first increased and then decreased. Total chemical oxygen demand (TCOD) decreased by 28.40% to 40.92%, and ammonia nitrogen accumulated during anaerobic digestion. For the alkaline, thermal, and alkaline-thermal pretreatments, daily methane yield significantly increased in mid-anaerobic digestion and cumulative methane yield (CMY) increased by 9.92, 35.25, and 52.95%, respectively, relative to the control. There were clear synergistic effects of alkaline-thermal pretreatment, resulting in a 17.20% increase in CMY compared with the sum of the separate alkaline and thermal pretreatments. Therefore, alkaline-thermal pretreatment was helpful for high-solids anaerobic digestion of DAS and was an effective pretreatment method. Gompertz model fitting to the CMY curve produced determination coefficients (R2) greater than 0.9931 for all pretreatments, which was better than for a first-order kinetic model fitting curve

    Control Strategy for Vehicle Inductive Wireless Charging Based on Load Adaptive and Frequency Adjustment

    No full text
    Wireless charging system for electric vehicles is a hot research issue in the world today. Since the existing research on wireless charging is mostly forward-looking aimed at low-power appliances like household appliances, while electric vehicles need a high-power, high-efficiency, and strong coupling wireless charging system. In this paper, we have specifically designed a 6.6 KW wireless charging system for electric vehicles and have proposed a control strategy suitable for electric vehicles according to its power charging characteristics and existing common wired charging protocol. Firstly, the influence of the equivalent load and frequency bifurcation on a wireless charging system is analyzed in this paper. Secondly, an adaptive load control strategy matching the characteristics of the battery, and the charging pile is put forward to meet the constant current and constant voltage charging requirements to improve the system efficiency. In addition, the frequency adjustment control strategy is designed to realize the real-time dynamic optimization of the entire system. It utilizes the improved methods of rapid judgment, variable step length matching and frequency splitting recognition, which are not adopted in early related researches. Finally, the results of 6.6 kW test show that the control strategy works perfectly since system response time can be reduced to less than 1 s, and the overall efficiency of the wireless charging system and the grid power supply module can reach up to 91%

    Gold Nanorods-Based Theranostics for Simultaneous Fluorescence/Two-Photon Luminescence Imaging and Synergistic Phototherapies

    No full text
    Gold nanorods (GNRs) have shown great potential applications in cancer theranostics due to the unique phenomenon of surface plasmon resonance, which leads to strong electric fields on the surface and consequently enhances the absorption and scattering in the near-infrared (NIR) region. Indocyanine green (ICG), an amphipathic dye, is not only an excellent NIR imaging agent but also an ideal light absorber for laser-mediated photodynamic and photothermal therapy. In this study, in order to integrate the merits of GNRs and ICG in biomedical applications, we developed ICG conjugated silica-coated GNRs (GNR@SiO2-ICG) for cancer imaging and phototherapy. The covalent coupling strategy reduces the probability of leakage/desorption during the delivery. The as-prepared GNR@SiO2-ICG could serve as efficient probes to simultaneously enhance fluorescence (FL) imaging and two-photon luminescence (TPL) imaging. In vitro experiments indicated that A375 cells could be killed through synergistic phototherapies effect of GNRs and ICG using single wavelength continuous-wave laser irradiation. Our results indicated that the synthesized GNR@SiO2-ICG are effective for simultaneously enhancing FL/TPL imaging and synergistic phototherapies
    corecore