7 research outputs found
Intra-specific variability and biological relevance of P3N-PIPO protein length in potyviruses
BackgroundPipo was recently described as a new ORF encoded within the genome of the Potyviridae family members (PNAS 105:5897–5902, 2008). It is embedded within the P3 cistron and is translated in the +2 reading frame relative to the potyviral long ORF as the P3N-PIPO fusion protein. In this work, we first collected pipo nucleotide sequences available for different isolates of 48 Potyvirus species. Second, to determine the biological implications of variation in pipo length, we measured infectivity, viral accumulation, cell-to-cell and systemic movements for two Turnip mosaic virus (TuMV) variants with pipo alleles of different length in three different susceptible host species, and tested for differences between the two variants.ResultsIn addition to inter-specific variation, there was high variation in the length of the PIPO protein among isolates within species (ranging from 1 to 89 amino acids). Furthermore, selection analyses on the P3 cistron did not account for the existence of stop codons in the pipo ORF, but showed that positive selection was significant in the overlapping region for Potato virus Y (PVY) and TuMV. In some cases, variability in length was associated with host species, geographic provenance and/or other strain features. We found significant empirical differences among the phenotypes associated with TuMV pipo alleles, though the magnitude and sign of the effects were host-dependent.ConclusionsThe combination of computational molecular evolution analyses and experiments stemming from these analyses provide clues about the selective pressures acting upon the different-length pipo alleles and show that variation in length may be maintained by host-driven selection
Role of APOBEC3H in the Viral Control of HIV Elite Controller Patients
Background APOBEC3H (A3H) gene presents variation at 2 positions (rs139297 and rs79323350) leading to a non-functional protein. So far, there is no information on the role played by A3H in spontaneous control of HIV. The aim of this study was to evaluate the A3H polymorphisms distribution in a well-characterized group of Elite Controller (EC) subjects. Methods We analyzed the genotype distribution of two different SNPs (rs139297 and rs79323350) of A3H in 30 EC patients and compared with 11 non-controller (NC) HIV patients. Genotyping was performed by PCR, cloning and Sanger sequencing. Both polymorphisms were analyzed jointly in order to adequately attribute the active or inactive status of A3H protein. Results EC subjects included in this study were able to maintain a long-term sustained spontaneous HIV-viral control and optimal CD4-T-cell counts; however, haplotypes leading to an active protein were very poorly represented in these patients. We found that the majority of EC subjects (23/30; 77%) presented allelic combinations leading to an inactive A3H protein, a frequency slightly lower than that observed for NC studied patients (10/11; 91%). Conclusions The high prevalence of non-functional protein coding-genotypes in EC subjects seems to indicate that other innate restriction factors different from APOBEC3H could be implicated in the replication control exhibited by these subjects
Genome-scale analysis of evolutionary rate and selection in a fast-expanding Spanish cluster of HIV-1 subtype F
This work is aimed at assessing the presence of positive selection and/or shifts of the evolutionary rate in a fast-expanding HIV-1 subtype F1 transmission cluster affecting men who have sex with men in Spain. We applied Bayesian coalescent phylogenetics and selection analyses to 23 full-coding region sequences from patients belonging to that cluster, along with other 19 F1 epidemiologically-unrelated sequences. A shift in the overall evolutionary rate of the virus, explained by positively selected sites in the cluster, was detected. We also found one substitution in Nef (H89F) that was specific to the cluster and experienced positive selection. These results suggest that fast transmission could have been facilitated by some inherent genetic properties of this HIV-1 variant
Exploring the diversity of the human blood virome
Metagenomics is greatly improving our ability to discover new viruses, as well as their possible associations with disease. However, metagenomics has also changed our understanding of viruses in general. The vast expansion of currently known viral diversity has revealed a large fraction of non-pathogenic viruses, and offers a new perspective in which viruses function as important components of many ecosystems. In this vein, studies of the human blood virome are often motivated by the search for new viral diseases, especially those associated with blood transfusions. However, these studies have revealed the common presence of apparently non-pathogenic viruses in blood, particularly human anelloviruses and, to a lower extent, human pegiviruses (HPgV). To shed light on the diversity of the human blood virome, we subjected pooled plasma samples from 587 healthy donors in Spain to a viral enrichment protocol, followed by massive parallel sequencing. This showed that anelloviruses were clearly the major component of the blood virome and showed remarkable diversity. In total, we assembled 332 complete or near-complete anellovirus genomes, 50 of which could be considered new species. HPgV was much less frequent, but we, nevertheless, recovered 17 different isolates that we subsequently used for characterizing the diversity of this virus. In-depth investigation of the human blood virome should help to elucidate the ecology of these viruses, and to unveil potentially associated diseases
SARS-CoV-2 remodels the landscape of small non-coding RNAs with infection time and symptom severity
The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has significantly impacted global health, stressing the necessity of basic understanding of the host response to this viral infection. In this study, we investigated how SARS-CoV-2 remodels the landscape of small non-coding RNAs (sncRNA) from a large collection of nasopharyngeal swab samples taken at various time points from patients with distinct symptom severity. High-throughput RNA sequencing analysis revealed a global alteration of the sncRNA landscape, with abundance peaks related to species of 21-23 and 32-33 nucleotides. Host-derived sncRNAs, including microRNAs (miRNAs), transfer RNA-derived small RNAs (tsRNAs), and small nucleolar RNA-derived small RNAs (sdRNAs) exhibited significant differential expression in infected patients compared to controls. Importantly, miRNA expression was predominantly down-regulated in response to SARS-CoV-2 infection, especially in patients with severe symptoms. Furthermore, we identified specific tsRNAs derived from Glu- and Gly-tRNAs as major altered elements upon infection, with 5' tRNA halves being the most abundant species and suggesting their potential as biomarkers for viral presence and disease severity prediction. Additionally, down-regulation of C/D-box sdRNAs and altered expression of tinyRNAs (tyRNAs) were observed in infected patients. These findings provide valuable insights into the host sncRNA response to SARS-CoV-2 infection and may contribute to the development of further diagnostic and therapeutic strategies in the clinic
Deep viral blood metagenomics reveals extensive anellovirus diversity in healthy humans
Human blood metagenomics has revealed the presence of different types of viruses in apparently healthy subjects. By far, anelloviruses constitute the viral family that is more frequently found in human blood, although amplification biases and contaminations pose a major challenge in this field. To investigate this further, we subjected pooled plasma samples from 120 healthy donors in Spain to high-speed centrifugation, RNA and DNA extraction, random amplification, and massive parallel sequencing. Our results confirm the extensive presence of anelloviruses in such samples, which represented nearly 97% of the total viral sequence reads obtained. We assembled 114 different viral genomes belonging to this family, revealing remarkable diversity. Phylogenetic analysis of ORF1 suggested 28 potentially novel anellovirus species, 24 of which were validated by Sanger sequencing to discard artifacts. These findings underscore the importance of implementing more efficient purification procedures that enrich the viral fraction as an essential step in virome studies and question the suggested pathological role of anelloviruses