2,894 research outputs found

    Fundamental-measure density functional for the fluid of aligned hard hexagons: New insights in fundamental measure theory

    Get PDF
    In this article we obtain a fundamental measure functional for the model of aligned hard hexagons in the plane. Our aim is not just to provide a functional for a new, admittedly academic, model, but to investigate the structure of fundamental measure theory. A model of aligned hard hexagons has similarities with the hard disk model. Both share "lost cases", i.e. admit configurations of three particles in which there is pairwise overlap but not triple overlap. These configurations are known to be problematic for fundamental measure functionals, which are not able to capture their contribution correctly. This failure lies in the inability of these functionals to yield a correct low density limit of the third order direct correlation function. Here we derive the functional by projecting aligned hard cubes on the plane x+y+z=0. The correct dimensional crossover behavior of these functionals permits us to follow this strategy. The functional of aligned hard cubes, however, does not have lost cases, so neither had the resulting functional for aligned hard hexagons. The latter exhibits, in fact, a peculiar structure as compared to the one for hard disks. It depends on a uniparametric family of weighted densities through a new term not appearing in the functional for hard disks. Apart from studying the freezing of this system, we discuss the implications of the functional structure for new developments of fundamental measure theory.Comment: 10 pages, 9 figures, uses RevTeX

    What do emulsification failure and Bose-Einstein condensation have in common?

    Full text link
    Ideal bosons and classical ring polymers formed via self-assembly, are known to have the same partition function, and so analogous phase transitions. In ring polymers, the analogue of Bose-Einstein condensation occurs when a ring polymer of macroscopic size appears. We show that a transition of the same general form occurs within a whole class of systems with self-assembly, and illustrate it with the emulsification failure of a microemulsion phase of water, oil and surfactant. As with Bose-Einstein condensation, the transition occurs even in the absence of interactions.Comment: 7 pages, 1 figure, typeset with EUROTeX, uses epsfi

    Cluster density functional theory for lattice models based on the theory of Mobius functions

    Full text link
    Rosenfeld's fundamental measure theory for lattice models is given a rigorous formulation in terms of the theory of Mobius functions of partially ordered sets. The free-energy density functional is expressed as an expansion in a finite set of lattice clusters. This set is endowed a partial order, so that the coefficients of the cluster expansion are connected to its Mobius function. Because of this, it is rigorously proven that a unique such expansion exists for any lattice model. The low-density analysis of the free-energy functional motivates a redefinition of the basic clusters (zero-dimensional cavities) which guarantees a correct zero-density limit of the pair and triplet direct correlation functions. This new definition extends Rosenfeld's theory to lattice model with any kind of short-range interaction (repulsive or attractive, hard or soft, one- or multi-component...). Finally, a proof is given that these functionals have a consistent dimensional reduction, i.e. the functional for dimension d' can be obtained from that for dimension d (d'<d) if the latter is evaluated at a density profile confined to a d'-dimensional subset.Comment: 21 pages, 2 figures, uses iopart.cls, as well as diagrams.sty (included

    A white dwarf-neutron star relativistic binary model for soft gamma-ray repeaters

    Full text link
    A scenario for SGRs is introduced in which gravitational radiation reaction effects drive the dynamics of an ultrashort orbital period X-ray binary embracing a high-mass donor white dwarf (WD) to a rapidly rotating low magnetised massive neutron star (NS) surrounded by a thick, dense and massive accretion torus. Driven by GR reaction, sparsely, the binary separation reduces, the WD overflows its Roche lobe and the mass transfer drives unstable the accretion disk around the NS. As the binary circular orbital period is a multiple integer number (mm) of the period of the WD fundamental mode (Pons et al. 2002), the WD is since long pulsating at its fundamental mode; and most of its harmonics, due to the tidal interaction with its NS orbital companion. Hence, when the powerful irradiation glows onto the WD; from the fireball ejected as part of the disk matter slumps onto the NS, it is partially absorbed. This huge energy excites other WD radial (pp-mode) pulsations (Podsiadlowski 1991,1995). After each mass-transfer episode the binary separation (and orbital period) is augmented significantly (Deloye & Bildsten 2003; Al\'ecyan & Morsink 2004) due to the binary's angular momentum redistribution. Thus a new adiabatic inspiral phase driven by GR reaction starts which brings the binary close again, and the process repeats. This model allows to explain most of SGRs observational features: their recurrent activity, energetics of giant superoutbursts and quiescent stages, and particularly the intriguing subpulses discovered by BeppoSAX (Feroci et al. 1999), which are suggested here to be {\it overtones} of the WD radial fundamental mode (see the accompanying paper: Mosquera Cuesta 2004b).Comment: This paper was submitted as a "Letter to the Editor" of MNRAS in July 17/2004. Since that time no answer or referee report was provided to the Author [MNRAS publication policy limits reviewal process no longer than one month (+/- half more) for the reviewal of this kind of submission). I hope this contribution is not receiving a similar "peer-reviewing" as given to the A. Dar and A. De Rujula's "Cannonball model for gamma-ray bursts", or to the R.K. Williams' "Penrose process for energy extraction from rotating black holes". The author welcomes criticisms and suggestions on this pape

    Phase diagram of a two-dimensional lattice gas model of a ramp system

    Get PDF
    Using Monte Carlo Simulation and fundamental measure theory we study the phase diagram of a two-dimensional lattice gas model with a nearest neighbor hard core exclusion and a next-to-nearest neighbors finite repulsive interaction. The model presents two competing ranges of interaction and, in common with many experimental systems, exhibits a low density solid phase, which melts back to the fluid phase upon compression. The theoretical approach is found to provide a qualitatively correct picture of the phase diagram of our model system.Comment: 14 pages, 8 figures, uses RevTex

    Lattice density-functional theory of surface melting: the effect of a square-gradient correction

    Full text link
    I use the method of classical density-functional theory in the weighted-density approximation of Tarazona to investigate the phase diagram and the interface structure of a two-dimensional lattice-gas model with three phases -- vapour, liquid, and triangular solid. While a straightforward mean-field treatment of the interparticle attraction is unable to give a stable liquid phase, the correct phase diagram is obtained when including a suitably chosen square-gradient term in the system grand potential. Taken this theory for granted, I further examine the structure of the solid-vapour interface as the triple point is approached from low temperature. Surprisingly, a novel phase (rather than the liquid) is found to grow at the interface, exhibiting an unusually long modulation along the interface normal. The conventional surface-melting behaviour is recovered only by artificially restricting the symmetries being available to the density field.Comment: 16 pages, 6 figure

    Density functional theory for hard-sphere mixtures: the White-Bear version Mark II

    Full text link
    In the spirit of the White-Bear version of fundamental measure theory we derive a new density functional for hard-sphere mixtures which is based on a recent mixture extension of the Carnahan-Starling equation of state. In addition to the capability to predict inhomogeneous density distributions very accurately, like the original White-Bear version, the new functional improves upon consistency with an exact scaled-particle theory relation in the case of the pure fluid. We examine consistency in detail within the context of morphological thermodynamics. Interestingly, for the pure fluid the degree of consistency of the new version is not only higher than for the original White-Bear version but also higher than for Rosenfeld's original fundamental measure theory.Comment: 16 pages, 3 figures; minor changes; J. Phys.: Condens. Matter, accepte

    A theorem on the absence of phase transitions in one-dimensional growth models with onsite periodic potentials

    Get PDF
    We rigorously prove that a wide class of one-dimensional growth models with onsite periodic potential, such as the discrete sine-Gordon model, have no phase transition at any temperature T>0T>0. The proof relies on the spectral analysis of the transfer operator associated to the models. We show that this operator is Hilbert-Schmidt and that its maximum eigenvalue is an analytic function of temperature.Comment: 6 pages, no figures, submitted to J Phys A: Math Ge
    • …
    corecore