2,459 research outputs found

    Cluster density functional theory for lattice models based on the theory of Mobius functions

    Full text link
    Rosenfeld's fundamental measure theory for lattice models is given a rigorous formulation in terms of the theory of Mobius functions of partially ordered sets. The free-energy density functional is expressed as an expansion in a finite set of lattice clusters. This set is endowed a partial order, so that the coefficients of the cluster expansion are connected to its Mobius function. Because of this, it is rigorously proven that a unique such expansion exists for any lattice model. The low-density analysis of the free-energy functional motivates a redefinition of the basic clusters (zero-dimensional cavities) which guarantees a correct zero-density limit of the pair and triplet direct correlation functions. This new definition extends Rosenfeld's theory to lattice model with any kind of short-range interaction (repulsive or attractive, hard or soft, one- or multi-component...). Finally, a proof is given that these functionals have a consistent dimensional reduction, i.e. the functional for dimension d' can be obtained from that for dimension d (d'<d) if the latter is evaluated at a density profile confined to a d'-dimensional subset.Comment: 21 pages, 2 figures, uses iopart.cls, as well as diagrams.sty (included

    A theorem on the absence of phase transitions in one-dimensional growth models with onsite periodic potentials

    Get PDF
    We rigorously prove that a wide class of one-dimensional growth models with onsite periodic potential, such as the discrete sine-Gordon model, have no phase transition at any temperature T>0T>0. The proof relies on the spectral analysis of the transfer operator associated to the models. We show that this operator is Hilbert-Schmidt and that its maximum eigenvalue is an analytic function of temperature.Comment: 6 pages, no figures, submitted to J Phys A: Math Ge

    Nonlinear electrodynamics and the Pioneer 10/11 spacecraft anomaly

    Get PDF
    The occurrence of the phenomenon known as photon acceleration is a natural prediction of nonlinear electrodynamics (NLED). This would appear as an anomalous frequency shift in any modeling of the electromagnetic field that only takes into account the classical Maxwell theory. Thus, it is tempting to address the unresolved anomalous, steady; but time-dependent, blueshift of the Pioneer 10/11 spacecrafts within the framework of NLED. Here we show that astrophysical data on the strength of the magnetic field in both the Galaxy and the local (super)cluster of galaxies support the view on the major Pioneer anomaly as a consequence of the phenomenon of photon acceleration. If confirmed, through further observations or lab experiments, the reality of this phenomenon should prompt to take it into account in any forthcoming research on both cosmological evolution and origin and dynamical effects of primordial magnetic fields, whose seeds are estimated to be very weak.Comment: Final version accepted for publication in Europhysics Letters, uses EPL style, 7 page

    Status of the ANAIS Dark Matter Project at the Canfranc Underground Laboratory

    Full text link
    The ANAIS experiment aims at the confirmation of the DAMA/LIBRA signal. A detailed analysis of two NaI(Tl) crystals of 12.5 kg each grown by Alpha Spectra will be shown: effective threshold at 1 keVee is at reach thanks to outstanding light collection and robust PMT noise filtering protocols and the measured background is well understood down to 3 keVee, having quantified K, U and Th content and cosmogenic activation in the crystals. A new detector was installed in Canfranc in March 2015 together with the two previous modules and preliminary characterization results will be presented. Finally, the status and expected sensitivity of the full experiment with 112 kg will be reviewed.Comment: Contributed to the 11th Patras Workshop on Axions, WIMPs and WISPs, Zaragoza, June 22 to 26, 201

    Light yield determination in large sodium iodide detectors applied in the search for dark matter

    Get PDF
    Application of NaI(Tl) detectors in the search for galactic dark matter particles through their elastic scattering off the target nuclei is well motivated because of the long standing DAMA/LIBRA highly significant positive result on annual modulation, still requiring confirmation. For such a goal, it is mandatory to reach very low threshold in energy (at or below the keV level), very low radioactive background (at a few counts/keV/kg/day), and high detection mass (at or above the 100 kg scale). One of the most relevant technical issues is the optimization of the crystal intrinsic scintillation light yield and the efficiency of the light collecting system for large mass crystals. In the frame of the ANAIS (Annual modulation with NaI Scintillators) dark matter search project large NaI(Tl) crystals from different providers coupled to two photomultiplier tubes (PMTs) have been tested at the Canfranc Underground Laboratory. In this paper we present the estimates of the NaI(Tl) scintillation light collected using full-absorption peaks at very low energy from external and internal sources emitting gammas/electrons, and single-photoelectron events populations selected by using very low energy pulses tails. Outstanding scintillation light collection at the level of 15~photoelectrons/keV can be reported for the final design and provider chosen for ANAIS detectors. Taking into account the Quantum Efficiency of the PMT units used, the intrinsic scintillation light yield in these NaI(Tl) crystals is above 40~photoelectrons/keV for energy depositions in the range from 3 up to 25~keV. This very high light output of ANAIS crystals allows triggering below 1~keV, which is very important in order to increase the sensitivity in the direct detection of dark matter

    Crossed-ratchet effects and domain wall geometrical pinning

    Get PDF
    The motion of a domain wall in a two dimensional medium is studied taking into account the internal elastic degrees of freedom of the wall and geometrical pinning produced both by holes and sample boundaries. This study is used to analyze the geometrical conditions needed for optimizing crossed ratchet effects in periodic rectangular arrays of asymmetric holes, recently observed experimentally in patterned ferromagnetic films. Geometrical calculations and numerical simulations have been used to obtain the anisotropic critical fields for depinning flat and kinked walls in rectangular arrays of triangles. The aim is to show with a generic elastic model for interfaces how to build a rectifier able to display crossed ratchet effects or effective potential landscapes for controlling the motion of interfaces or invasion fronts.Comment: 13 pages, 18 figure
    corecore