17 research outputs found

    Integration of UAS in the civil airworthiness regulatory system: present and future

    Get PDF
    The last years are witnessing a number of initiatives worldwide devoted to assess the safety levels of the unmanned aircraft. These initiatives are very heterogeneous; some of them are centred in airworthiness aspects while others focus on operations. From the point of view of a potential UAS manufacturer the actual situation is plenty of uncertainties in relation to the regulations to be applied for certifying the design, manufacturing and maintenance, and from the point of view of the potential operator the situation is analogous with respect to operational procedures. In the present work the emphasis is on the manufacturer’s situation. The objective of this work is to clarify the present civil airworthiness regulatory scene by summarizing all the regulatory efforts up to date and preparing a comparative analysis of them. In this comparison, the manned regulations are included too. The most representative state-of-the-art UAS are analyzed from the point of view of the existing and the future regulatory framework. The main aspects to be considered are related to the airworthiness certification (performances, structural design, etc) for which a quantitative comparison is established in order to clarify how the new regulatory framework, mainly based on the conventional aircraft certification codes, will affect future UAS, compared to the existing regulation

    Aerodynamic Modelling for a Morphing Rudder

    Get PDF
    The appearance of new materials and smaller and more capable actuators enable the morphing controlled deformation of the aerodynamic shape of wing like type of structures. This contribution presents the applied aerodynamics studies of a morphing rudder for a commercial transport aircraft. The conventional rudder aerodynamics is CFD modeled and the results correlated to certification loads report. The morphing rudder CFD model predicts better aerodynamics efficiency in relation to the conventional one. This conclusion is the first step for future commercial aircraft Vertical Tail Plane weight reductions with morphing rudder implementation

    Aerodynamic parametric analysis of an unconventional joined-wing aircraft configuration

    Full text link
    In this paper, the experimental results of an unconventional joined-wing aircraft configuration are presented. The test model uses two different wings, forward and rear, both joined in tandem and forming diamond shapes both in plant and front views. The wings are joined in such a way that it is possible to change the rear wing dihedral angle values and the rear wing sweep angle values in 25 different positions that modify the relative distance and the relative height between the wings. To measure the system aerodynamic coefficients itis necessary to perform wind tunnel tests. The datapresented corresponds to the lift, drag and induced drag aerodynamic coefficients, as well as the aerodynamic efficiency and the parameter for minimum required power, from the calculated values of the lift and drag time series measured by a 6-axis force and torque sensor. The results show the influence on the aerodynamic coefficients of the rear wing sweep and dihedral angles parameters. As a main result, it can be concluded that, in general terms, the lift and induced drag aerodynamic coefficients values decrease as both the distance and height between the wings increase, on the other hand, the total drag aerodynamic coefficient decreases if the distance between the wings increases, but nevertheless shows a slight tendency to increase if the height of the rear wing increases, whereas the aerodynamic efficiency and the parameter for minimum required power increase if the distance between the wings increase

    Rapid method for spacecraft sizing

    Full text link
    In this paper, a rapid method for spacecraft sizing is presented. This method is useful in both the conceptual and preliminary design phases of scientific and communication satellites. The aim of this method is to provide a sizing procedure similar to the ones used in the design of aircraft; actually by determining the mass of all the spacecraft subsystems. In the Introduction, the importance of an accurate initial mass budget in the design of satellites is emphasized. Literature about this topic is not very extensive and most of the existing methods have been recapitulated. The methodology followed in the proposed procedure for spacecraft mass sizing is based on these methods. Data from 26 existing satellites have been considered to obtain correlations between each subsystem mass and the mass of the whole spacecraft

    RPAS integration in non segregated airspace: the SESAR approach

    Get PDF
    Airliners and Remotely Piloted Aircraft Systems (RPAS), with very different performances and features, will have to coexist in a seamless airspace whose definition and technological infrastructure, the Single European Sky ATM Research initiative (SESAR), is currently undertaking. This paper presents the Concept of Operations (CONOPS) of the integration of RPAS in non segregated airspace, from two perspectives that should be harmonized: the first one is the future Air Traffic Management (ATM) system defined by SESAR; and the second is the perspective of the RPAS operator or user. The objective of this paper is to present a well defined context of operations for the RPAS to be integrated in non segregated airspace, describing the basic interfaces which the RPAS user will need for the safe integration of the RPAS operations in non segregated airspace proposed in SESAR concept

    Cost-range trade-off in the design and operation of long range transport airplanes

    Get PDF
    The objective of this study is to show the environmental and operating cost savings that could be achieved if long range transport aircraft were designed for shorter ranges; obviously at the drawback of longer trip duration, for the inevitable intermediate stop. The maximum take-off weight and operating empty weight, main design variables of transport airplanes, would be greatly reduced. However, it would be impossible to take full advantage of this procedure for, on the one hand, it would be difficult to find a suitable airport at the exact midpoint and, moreover, there would be a certain increase in the total distance because of the deviation. The overall result will depend on the length of the route, the technology level (range factor and operating empty weight fraction with respect to maximum take-off weight), and other variables that will be discussed. Only for very long routes and/or very high fuel cost the shorter design range case represents a meaningful saving with respect to the non-stop flight

    Experimental investigation on box-wing configuration for UAS

    Get PDF
    The range for airframe configurations available for UAS is as diverse as those used for manned aircraft and more since the commercial risk in trying unorthodox solutions is less for the UAS manufacturer. This is principally because the UAS airframes are usually much smaller than the manned aircraft and operators are less likely to have a bias against unconventional configurations. One of these unconventional configurations is the box-wing, which is an unconventional solution for the design of the new UAS generation. The existence of two wings separated in different planes that are, however, significantly close together, means that the aerodynamic analysis by theoretical or computational methods is a difficult task, due to the considerable interference existing. Considering the fact that the flight of most UAS takes place at low Reynolds numbers, it is necessary to study the aerodynamics of the box wing configuration by testing different models in a wind tunnel to be able to obtain reasonable results. In the present work, the study is enhanced by varying not only the sweepback angles of the two wings, but also their position along the models’ fuselage. Certain models have shown being more efficient than others, pointing out that certain relative positions of wing exists that can improve the aerodynamics efficiency of the box wing configuration

    Evolución histórica de los vehículos aéreos no tripulados hasta la actualidad

    Full text link
    The origin and development of unmanned aviation has been almost matched that of manned aviation, starting both from an almost common point. As in conventional manned aviation, military applications, have been the motor of technological development and the potential applications of these types of systems throughout much of the twentieth century and early twenty-first century. Finally it has been in relatively recent times that these systems are experiencing an impressive boom due to the discovery of the wide variety of commercial and civil operations that are able to perform very effectively. This paper attempts to summarize the historical evolution that these systems have suffered and in the end, to present a quick analysis of the major civil / commercial applications, trying to provide an overview of the main types of systems, their classification and general configuration.Peer Reviewe

    Developing models for future real-time platforms: Virtual simulation and design of new components and systems for aircraft and remotely piloted aircraft systems

    Get PDF
    In the development of electrified and other vehicle systems, the modelling and simulation of the vehicle is very important. With these tools the preliminary design, as well as later detailed studies of the systems developed, allow engineers to spend less time on each phase of their projects or address them with an integrated approach. In addition, this integrated approach provides the possibility of building hardware-in-the loop models with all the components required. This vehicle modelling and simulation has gained more interest with the increasing use of a wide variety of RPAS, ranging from light weight micro aircraft to large vehicles of various tons. For this reason, the previously-described building tools are the final objective of the developing models to be used in real-time platform projects. The first step presented in this paper is to build a simulator that reproduces the behaviour of a selected aircraft and validate it. This paper presents the study of the performances and behaviour of an OPV used to validate the simulator developed later. At the end, some preliminary tests and estimations of the performances for the selected OPV with an electric motor are presented
    corecore