240 research outputs found
HDL and reverse cholesterol transport in humans and animals: Lessons from pre-clinical models and clinical studies
The ability to accept cholesterol from cells and to promote reverse cholesterol transport (RCT) represents the best characterized antiatherogenic function of HDL. Studies carried out in animal models have unraveled the multiple mechanisms by which these lipoproteins drive cholesterol efflux from macrophages and cholesterol uptake to the liver. Moreover, the influence of HDL composition and the role of lipid transporters have been clarified by using suitable transgenic models or through experimental design employing pharmacological or nutritional interventions. Cholesterol efflux capacity (CEC), an in vitro assay developed to offer a measure of the first step of RCT, has been shown to associate with cardiovascular risk in several human cohorts, supporting the atheroprotective role of RCT in humans as well. However, negative data in other cohorts have raised concerns on the validity of this biomarker. In this review we will present the most relevant data documenting the role of HDL in RCT, as assessed in classical or innovative methodological approaches
Clinical experience of lomitapide therapy in patients with homozygous familial hypercholesterolaemia
The microsomal triglyceride transfer protein (MTP) inhibitor lomitapide is a licenced adjunct to a low-fat diet and other lipid-lowering medication, with or without low-density lipoprotein apheresis, for the treatment of adults with homozygous familial hypercholesterolaemia (HoFH). In a recently published phase 3 study, patients with HoFH received lomitapide in addition to maximally tolerated lipid-lowering therapy. Treatment with lomitapide resulted in a mean approximate 50% reduction in LDL-C levels after 26 weeks compared with baseline levels (p < 0.0001). This decrease in LDL-C was maintained at Weeks 56 and 78 (44% [p < 0.0001] and 38% [p = 0.0001], respectively). This paper offers clinical perspectives based on selected case histories of patients participating in the phase 3 lomitapide study. These cases provide illustrative examples of the efficacy of lomitapide, with or without apheresis, and show that the effective management of adverse effects can enable patients to remain on effective treatment
Microsomal Triglyceride Transfer Protein Transfers and Determines Plasma Concentrations of Ceramide and Sphingomyelin but Not Glycosylceramide
Sphingolipids, a large family of bioactive lipids, are implicated in stress responses, differentiation, proliferation, apoptosis, and other physiological processes. Aberrant plasma levels of sphingolipids contribute to metabolic disease, atherosclerosis, and insulin resistance. They are fairly evenly distributed in high density and apoB-containing lipoproteins (B-lps). Mechanisms involved in the transport of sphingolipids to the plasma are unknown. Here, we investigated the role of microsomal triglyceride transfer protein (MTP), required for B-lp assembly and secretion, in sphingolipid transport to the plasma. Abetalipoproteinemia patients with deleterious mutations in MTP and absence of B-lps had significantly lower plasma ceramide and sphingomyelin but normal hexosylceramide, lactosylceramide, and different sphingosines compared with unaffected controls. Furthermore, similar differential effects on plasma sphingolipids were seen in liver- and intestine-specific MTP knock-out (L,I-Mttp(-/-)) mice, suggesting that MTP specifically plays a role in the regulation of plasma ceramide and sphingomyelin. We hypothesized that MTP deficiency may affect either their synthesis or secretion. MTP deficiency had no effect on ceramide and sphingomyelin synthesis but reduced secretion from primary hepatocytes and hepatoma cells. Therefore, MTP is involved in ceramide and sphingomyelin secretion but not in their synthesis. We also found that MTP transferred these lipids between vesicles in vitro. Therefore, we propose that MTP might regulate plasma ceramide and sphingomyelin levels by transferring these lipids to B-lps in the liver and intestine and facilitating their secretion
Long-term efficacy and safety of the microsomal triglyceride transfer protein inhibitor lomitapide in patients with homozygous familial hypercholesterolemia
Homozygous familial hypercholesterolemia is a genetic disorder characterized
by low-density lipoprotein (LDL)-receptor dysfunction, markedly elevated
levels of LDL-cholesterol (LDL-C) and premature atherosclerosis. Patients are
often poorly responsive to conventional lipid-lowering therapies that upregulate
LDL-receptor expression
Infusion of Reconstituted High-Density Lipoprotein, CSL112, in Patients With Atherosclerosis: Safety and Pharmacokinetic Results From a Phase 2a Randomized Clinical Trial
Background CSL112 is a new formulation of human apolipoprotein A‐I (apoA‐I) being developed to reduce cardiovascular events following acute coronary syndrome. This phase 2a, randomized, double‐blind, multicenter, dose‐ranging trial represents the first clinical investigation to assess the safety and pharmacokinetics/pharmacodynamics of a CSL112 infusion among patients with stable atherosclerotic disease. Methods and Results Patients were randomized to single ascending doses of CSL112 (1.7, 3.4, or 6.8 g) or placebo, administered over a 2‐hour period. Primary safety assessments consisted of alanine aminotransferase or aspartate aminotransferase elevations \u3e3× upper limits of normal and study drug–related adverse events. Pharmacokinetic/pharmacodynamic assessments included apoA‐I plasma concentration and measures of the ability of serum to promote cholesterol efflux from cells ex vivo. Of 45 patients randomized, 7, 12, and 14 received 1.7‐, 3.4‐, and 6.8‐g CSL112, respectively, and 11 received placebo. There were no clinically significant elevations (\u3e3× upper limit of normal) in alanine aminotransferase or aspartate aminotransferase. Adverse events were nonserious and mild and occurred in 5 (71%), 5 (41%), and 6 (43%) patients in the CSL112 1.7‐, 3.4‐, and 6.8‐g groups, respectively, compared with 3 (27%) placebo patients. The imbalance in adverse events was attributable to vessel puncture/infusion‐site bruising. CSL112 resulted in rapid (Tmax≈2 hours) and dose‐dependent increases in apoA‐I (145% increase in the 6.8‐g group) and total cholesterol efflux (up to 3.1‐fold higher than placebo) (P\u3c0.001). Conclusions CSL112 infusion was well tolerated in patients with stable atherosclerotic disease. CSL112 immediately raised apoA‐I levels and caused a rapid and marked increase in the capacity of serum to efflux cholesterol. This potential novel approach for the treatment of atherosclerosis warrants further investigation. Clinical Trial Registration URL: http://www.ClinicalTrials.gov. Unique identifier: NCT01499420
Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease.
Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL) cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI knockout mice) have markedly elevated HDL-C levels but, paradoxically, increased atherosclerosis. The impact of SR-BI on HDL metabolism and CHD risk in humans remains unclear. Through targeted sequencing of coding regions of lipid-modifying genes in 328 individuals with extremely high plasma HDL-C levels, we identified a homozygote for a loss-of-function variant, in which leucine replaces proline 376 (P376L), in SCARB1, the gene encoding SR-BI. The P376L variant impairs posttranslational processing of SR-BI and abrogates selective HDL cholesterol uptake in transfected cells, in hepatocyte-like cells derived from induced pluripotent stem cells from the homozygous subject, and in mice. Large population-based studies revealed that subjects who are heterozygous carriers of the P376L variant have significantly increased levels of plasma HDL-C. P376L carriers have a profound HDL-related phenotype and an increased risk of CHD (odds ratio = 1.79, which is statistically significant)
Contemporary Homozygous Familial Hypercholesterolemia in the United States: Insights From the CASCADE FH Registry
Erratum in: J Am Heart Assoc. 2023 Jun 6;12(11):e027706. doi: 10.1161/JAHA.122.027706. Epub 2023 Jun 1.Free PMC article: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227232/Background: Homozygous familial hypercholesterolemia (HoFH) is a rare, treatment-resistant disorder characterized by earlyonset atherosclerotic and aortic valvular cardiovascular disease if left untreated. Contemporary information on HoFH in the United States is lacking, and the extent of underdiagnosis and undertreatment is uncertain. Methods and Results: Data were analyzed from 67 children and adults with clinically diagnosed HoFH from the CASCADE (Cascade Screening for Awareness and Detection) FH Registry. Genetic diagnosis was confirmed in 43 patients. We used the clinical characteristics of genetically confirmed patients with HoFH to query the Family Heart Database, a US anonymized payer health database, to estimate the number of patients with similar lipid profiles in a “real-world” setting. Untreated lowdensity lipoprotein cholesterol levels were lower in adults than children (533 versus 776mg/dL; P=0.001). At enrollment, atherosclerotic cardiovascular disease and supravalvular and aortic valve stenosis were present in 78.4% and 43.8% and 25.5% and 18.8% of adults and children, respectively. At most recent follow-up, despite multiple lipid-lowering treatment, low-density lipoprotein cholesterol goals were achieved in only a minority of adults and children. Query of the Family Heart Database identified 277 individuals with profiles similar to patients with genetically confirmed HoFH. Advanced lipid-lowering treatments were prescribed for 18%; 40% were on no lipid-lowering treatment; atherosclerotic cardiovascular disease was reported in 20%; familial hypercholesterolemia diagnosis was uncommon. Conclusions: Only patients with the most severe HoFH phenotypes are diagnosed early. HoFH remains challenging to treat. Results from the Family Heart Database indicate HoFH is systemically underdiagnosed and undertreated. Earlier screening, aggressive lipid-lowering treatments, and guideline implementation are required to reduce disease burden in HoFH.Dr Martin is supported by grants/contracts from the American Heart Association (20SFRN35380046, 20SFRN35490003, 878924, and 882415), Patient‐Centered Outcomes Research Institute (PCORI) (ME‐2019C1‐15328), National Institutes of Health (NIH) (R01AG071032 and P01 HL108800), the David and June Trone Family Foundation, Pollin Digital Health Innovation Fund, and Sandra and Larry Small; Dr Knowles is supported by the NIH through grants P30 DK116074 (to the Stanford Diabetes Research Center), R01 DK116750, R01 DK120565, and R01 DK106236; and by a grant from the Bilateral Science Foundation. Dr Linton is supported by NIH grants P01HL116263, HL148137, HL159487, and HL146134.info:eu-repo/semantics/publishedVersio
The Dynamin Chemical Inhibitor Dynasore Impairs Cholesterol Trafficking and Sterol-Sensitive Genes Transcription in Human HeLa Cells and Macrophages
Intracellular transport of cholesterol contributes to the regulation of cellular cholesterol homeostasis by mechanisms that are yet poorly defined. In this study, we characterized the impact of dynasore, a recently described drug that specifically inhibits the enzymatic activity of dynamin, a GTPase regulating receptor endocytosis and cholesterol trafficking. Dynasore strongly inhibited the uptake of low-density lipoprotein (LDL) in HeLa cells, and to a lower extent in human macrophages. In both cell types, dynasore treatment led to the abnormal accumulation of LDL and free cholesterol (FC) within the endolysosomal network. The measure of cholesterol esters (CE) further showed that the delivery of regulatory cholesterol to the endoplasmic reticulum (ER) was deficient. This resulted in the inhibition of the transcriptional control of the three major sterol-sensitive genes, sterol-regulatory element binding protein 2 (SREBP-2), 3-hydroxy-3-methyl-coenzymeA reductase (HMGCoAR), and low-density lipoprotein receptor (LDLR). The sequestration of cholesterol in the endolysosomal compartment impaired both the active and passive cholesterol efflux in HMDM. Our data further illustrate the importance of membrane trafficking in cholesterol homeostasis and validate dynasore as a new pharmacological tool to study the intracellular transport of cholesterol
- …