542 research outputs found

    HDL and reverse cholesterol transport in humans and animals: Lessons from pre-clinical models and clinical studies

    Get PDF
    The ability to accept cholesterol from cells and to promote reverse cholesterol transport (RCT) represents the best characterized antiatherogenic function of HDL. Studies carried out in animal models have unraveled the multiple mechanisms by which these lipoproteins drive cholesterol efflux from macrophages and cholesterol uptake to the liver. Moreover, the influence of HDL composition and the role of lipid transporters have been clarified by using suitable transgenic models or through experimental design employing pharmacological or nutritional interventions. Cholesterol efflux capacity (CEC), an in vitro assay developed to offer a measure of the first step of RCT, has been shown to associate with cardiovascular risk in several human cohorts, supporting the atheroprotective role of RCT in humans as well. However, negative data in other cohorts have raised concerns on the validity of this biomarker. In this review we will present the most relevant data documenting the role of HDL in RCT, as assessed in classical or innovative methodological approaches

    Clinical experience of lomitapide therapy in patients with homozygous familial hypercholesterolaemia

    Get PDF
    The microsomal triglyceride transfer protein (MTP) inhibitor lomitapide is a licenced adjunct to a low-fat diet and other lipid-lowering medication, with or without low-density lipoprotein apheresis, for the treatment of adults with homozygous familial hypercholesterolaemia (HoFH). In a recently published phase 3 study, patients with HoFH received lomitapide in addition to maximally tolerated lipid-lowering therapy. Treatment with lomitapide resulted in a mean approximate 50% reduction in LDL-C levels after 26 weeks compared with baseline levels (p < 0.0001). This decrease in LDL-C was maintained at Weeks 56 and 78 (44% [p < 0.0001] and 38% [p = 0.0001], respectively). This paper offers clinical perspectives based on selected case histories of patients participating in the phase 3 lomitapide study. These cases provide illustrative examples of the efficacy of lomitapide, with or without apheresis, and show that the effective management of adverse effects can enable patients to remain on effective treatment

    Target achievement and cardiovascular event rates with Lomitapide in homozygous Familial Hypercholesterolaemia

    Get PDF
    Background Homozygous familial hypercholesterolaemia (HoFH) is characterized by a markedly increased risk of premature cardiovascular (CV) events and cardiac death. Lomitapide reduces low-density lipoprotein cholesterol (LDL-C) levels; however, the probable impact on LDL-C goals and CV events is unknown. Methods We used data collected in the first 26 weeks of the lomitapide pivotal phase 3 study (NCT00730236) to evaluate achievement of European Atherosclerosis Society (EAS) LDL-C targets. We used publicly available data reporting major adverse CV events (MACE) rates from other cohorts of HoFH patients to compare event rates for an equivalent number of patient years of exposure (98) in the lomitapide extension trial (NCT00943306). Results Twenty-nine patients were included in the phase 3 study. During the first 26 weeks, 15 (51%) and eight (28%) reached LDL-C targets of 100 mg/dL and 70 mg/dL, respectively, at least once. Fourteen (74%) and 11 (58%) of the 19 patients who remained in the extension study after week 126 reached LDL-C targets of 100 mg/dL and 70 mg/dL at least once during the entire study period. Only two MACE were reported in the lomitapide trials (one cardiac death and one coronary artery bypass graft (CABG)) – equivalent to 1.7 events per 1000 patient months of treatment. MACE rates were 21.7, 9.5 and 1.8 per 1000 patient-months respectively in cohorts of HoFH patients pre- and post-mipomersen, and receiving evolocumab. On treatment LDL-C levels were 166, 331 and 286 mg/dL for lomitapide, mipomersen and evolocumab, respectively. Conclusions Approximately three quarters and half of patients who took lomitapide for at least 2 years reached LDL-C goals of 100 mg/dL and 70 mg/dL, respectively. There were fewer major CV events per 1000 patient months of treatment in patients taking lomitapide, mipomersen or evolocumab than reported in the mipomersen cohort prior to starting mipomersen. These results support the hypothesis that novel lipid-lowering therapies may reduce CV events in HoFH patients by lowering LDL-C further. Trial registration NCT00730236 (registered 8 Aug 2008) and NCT00943306 (registered 22 July 2009)

    Crystal structure of 9-(4-bromobutyl)-9 H

    Get PDF

    Microsomal Triglyceride Transfer Protein Transfers and Determines Plasma Concentrations of Ceramide and Sphingomyelin but Not Glycosylceramide

    Get PDF
    Sphingolipids, a large family of bioactive lipids, are implicated in stress responses, differentiation, proliferation, apoptosis, and other physiological processes. Aberrant plasma levels of sphingolipids contribute to metabolic disease, atherosclerosis, and insulin resistance. They are fairly evenly distributed in high density and apoB-containing lipoproteins (B-lps). Mechanisms involved in the transport of sphingolipids to the plasma are unknown. Here, we investigated the role of microsomal triglyceride transfer protein (MTP), required for B-lp assembly and secretion, in sphingolipid transport to the plasma. Abetalipoproteinemia patients with deleterious mutations in MTP and absence of B-lps had significantly lower plasma ceramide and sphingomyelin but normal hexosylceramide, lactosylceramide, and different sphingosines compared with unaffected controls. Furthermore, similar differential effects on plasma sphingolipids were seen in liver- and intestine-specific MTP knock-out (L,I-Mttp(-/-)) mice, suggesting that MTP specifically plays a role in the regulation of plasma ceramide and sphingomyelin. We hypothesized that MTP deficiency may affect either their synthesis or secretion. MTP deficiency had no effect on ceramide and sphingomyelin synthesis but reduced secretion from primary hepatocytes and hepatoma cells. Therefore, MTP is involved in ceramide and sphingomyelin secretion but not in their synthesis. We also found that MTP transferred these lipids between vesicles in vitro. Therefore, we propose that MTP might regulate plasma ceramide and sphingomyelin levels by transferring these lipids to B-lps in the liver and intestine and facilitating their secretion

    Long-term efficacy and safety of the microsomal triglyceride transfer protein inhibitor lomitapide in patients with homozygous familial hypercholesterolemia

    Get PDF
    Homozygous familial hypercholesterolemia is a genetic disorder characterized by low-density lipoprotein (LDL)-receptor dysfunction, markedly elevated levels of LDL-cholesterol (LDL-C) and premature atherosclerosis. Patients are often poorly responsive to conventional lipid-lowering therapies that upregulate LDL-receptor expression

    Infusion of Reconstituted High-Density Lipoprotein, CSL112, in Patients With Atherosclerosis: Safety and Pharmacokinetic Results From a Phase 2a Randomized Clinical Trial

    Get PDF
    Background CSL112 is a new formulation of human apolipoprotein A‐I (apoA‐I) being developed to reduce cardiovascular events following acute coronary syndrome. This phase 2a, randomized, double‐blind, multicenter, dose‐ranging trial represents the first clinical investigation to assess the safety and pharmacokinetics/pharmacodynamics of a CSL112 infusion among patients with stable atherosclerotic disease. Methods and Results Patients were randomized to single ascending doses of CSL112 (1.7, 3.4, or 6.8 g) or placebo, administered over a 2‐hour period. Primary safety assessments consisted of alanine aminotransferase or aspartate aminotransferase elevations \u3e3× upper limits of normal and study drug–related adverse events. Pharmacokinetic/pharmacodynamic assessments included apoA‐I plasma concentration and measures of the ability of serum to promote cholesterol efflux from cells ex vivo. Of 45 patients randomized, 7, 12, and 14 received 1.7‐, 3.4‐, and 6.8‐g CSL112, respectively, and 11 received placebo. There were no clinically significant elevations (\u3e3× upper limit of normal) in alanine aminotransferase or aspartate aminotransferase. Adverse events were nonserious and mild and occurred in 5 (71%), 5 (41%), and 6 (43%) patients in the CSL112 1.7‐, 3.4‐, and 6.8‐g groups, respectively, compared with 3 (27%) placebo patients. The imbalance in adverse events was attributable to vessel puncture/infusion‐site bruising. CSL112 resulted in rapid (Tmax≈2 hours) and dose‐dependent increases in apoA‐I (145% increase in the 6.8‐g group) and total cholesterol efflux (up to 3.1‐fold higher than placebo) (P\u3c0.001). Conclusions CSL112 infusion was well tolerated in patients with stable atherosclerotic disease. CSL112 immediately raised apoA‐I levels and caused a rapid and marked increase in the capacity of serum to efflux cholesterol. This potential novel approach for the treatment of atherosclerosis warrants further investigation. Clinical Trial Registration URL: http://www.ClinicalTrials.gov. Unique identifier: NCT01499420

    HEART UK statement on the management of homozygous familial hypercholesterolaemia in the United Kingdom

    Get PDF
    This consensus statement addresses the current three main modalities of treatment of homozygous familial hypercholesterolaemia (HoFH): pharmacotherapy, lipoprotein (Lp) apheresis and liver transplantation. HoFH may cause very premature atheromatous arterial disease and death, despite treatment with Lp apheresis combined with statin, ezetimibe and bile acid sequestrants. Two new classes of drug, effective in lowering cholesterol in HoFH, are now licensed in the United Kingdom. Lomitapide is restricted to use in HoFH but, may cause fatty liver and is very expensive. PCSK9 inhibitors are quite effective in receptor defective HoFH, are safe and are less expensive. Lower treatment targets for lipid lowering in HoFH, in line with those for the general FH population, have been proposed to improve cardiovascular outcomes. HEART UK presents a strategy combining Lp apheresis with pharmacological treatment to achieve these targets in the United Kingdom (UK). Improved provision of Lp apheresis by use of existing infrastructure for extracorporeal treatments such as renal dialysis is promoted. The clinical management of adults and children with HoFH including advice on pregnancy and contraception are addressed. A premise of the HEART UK strategy is that the risk of early use of drug treatments beyond their licensed age restriction may be balanced against risks of liver transplantation or ineffective treatment in severely affected patients. This may be of interest beyond the UK
    corecore