145 research outputs found

    SU(2) lattice gluon propagators at finite temperatures in the deep infrared region and Gribov copy effects

    Full text link
    We study numerically the SU(2) Landau gauge transverse and longitudinal gluon propagators at non-zero temperatures T both in confinement and deconfinement phases. The special attention is paid to the Gribov copy effects in the IR-region. Applying powerful gauge fixing algorithm we find that the Gribov copy effects for the transverse propagator D_T(p) are very strong in the infrared, while the longitudinal propagator D_L(p) shows very weak (if any) Gribov copy dependence. The value D_T(0) tends to decrease with growing lattice size; however, D_T(0) is non-zero in the infinite volume limit, in disagreement with the suggestion made in [1]. We show that in the infrared region D_T(p) is not consistent with the pole-type formula not only in the deconfinement phase but also for T < T_c. We introduce new definition of the magnetic infrared mass scale ('magnetic screening mass') m_M. The electric mass m_E has been determined from the momentum space longitudinal gluon propagator. We study also the (finite) volume and temperature dependence of the propagators as well as discretization errors.Comment: 11 pages, 14 figures, 3 tables. Few minor change

    Exploratory study of three-point Green's functions in Landau-gauge Yang-Mills theory

    Get PDF
    Green's functions are a central element in the attempt to understand non-perturbative phenomena in Yang-Mills theory. Besides the propagators, 3-point Green's functions play a significant role, since they permit access to the running coupling constant and are an important input in functional methods. Here we present numerical results for the two non-vanishing 3-point Green's functions in 3d pure SU(2) Yang-Mills theory in (minimal) Landau gauge, i.e. the three-gluon vertex and the ghost-gluon vertex, considering various kinematical regimes. In this exploratory investigation the lattice volumes are limited to 20^3 and 30^3 at beta=4.2 and beta=6.0. We also present results for the gluon and the ghost propagators, as well as for the eigenvalue spectrum of the Faddeev-Popov operator. Finally, we compare two different numerical methods for the evaluation of the inverse of the Faddeev-Popov matrix, the point-source and the plane-wave-source methods.Comment: 18 pages, 12 figures, 3 table

    The No-Pole Condition in Landau gauge: Properties of the Gribov Ghost Form-Factor and a Constraint on the 2d Gluon Propagator

    Get PDF
    We study the Landau-gauge Gribov ghost form-factor sigma(p^2) for SU(N) Yang-Mills theories in the d-dimensional case. We find a qualitatively different behavior for d=3,4 w.r.t. d=2. In particular, considering any (sufficiently regular) gluon propagator D(p^2) and the one-loop-corrected ghost propagator G(p^2), we prove in the 2d case that sigma(p^2) blows up in the infrared limit p -> 0 as -D(0)\ln(p^2). Thus, for d=2, the no-pole condition \sigma(p^2) 0) can be satisfied only if D(0) = 0. On the contrary, in d=3 and 4, sigma(p^2) is finite also if D(0) > 0. The same results are obtained by evaluating G(p^2) explicitly at one loop, using fitting forms for D(p^2) that describe well the numerical data of D(p^2) in d=2,3,4 in the SU(2) case. These evaluations also show that, if one considers the coupling constant g^2 as a free parameter, G(p^2) admits a one-parameter family of behaviors (labelled by g^2), in agreement with Boucaud et al. In this case the condition sigma(0) <= 1 implies g^2 <= g^2_c, where g^2_c is a 'critical' value. Moreover, a free-like G(p^2) in the infrared limit is obtained for any value of g^2 < g^2_c, while for g^2 = g^2_c one finds an infrared-enhanced G(p^2). Finally, we analyze the Dyson-Schwinger equation (DSE) for sigma(p^2) and show that, for infrared-finite ghost-gluon vertices, one can bound sigma(p^2). Using these bounds we find again that only in the d=2 case does one need to impose D(0) = 0 in order to satisfy the no-pole condition. The d=2 result is also supported by an analysis of the DSE using a spectral representation for G(p^2). Thus, if the no-pole condition is imposed, solving the d=2 DSE cannot lead to a massive behavior for D(p^2). These results apply to any Gribov copy inside the so-called first Gribov horizon, i.e. the 2d result D(0) = 0 is not affected by Gribov noise. These findings are also in agreement with lattice data.Comment: 40 pages, 2 .eps figure

    SU(2) Landau gluon propagator on a 140^3 lattice

    Full text link
    We present a numerical study of the gluon propagator in lattice Landau gauge for three-dimensional pure-SU(2) lattice gauge theory at couplings beta = 4.2, 5.0, 6.0 and for lattice volumes V = 40^3, 80^3, 140^3. In the limit of large V we observe a decreasing gluon propagator for momenta smaller than p_{dec} = 350^{+ 100}_{- 50} MeV. Data are well fitted by Gribov-like formulae and seem to indicate an infra-red critical exponent kappa slightly above 0.6, in agreement with recent analytic results.Comment: 5 pages with 2 figures and 3 tables; added a paragraph on discretization effect

    Renormalization-group Calculation of Color-Coulomb Potential

    Full text link
    We report here on the application of the perturbative renormalization-group to the Coulomb gauge in QCD. We use it to determine the high-momentum asymptotic form of the instantaneous color-Coulomb potential V(k)V(\vec{k}) and of the vacuum polarization P(k,k4)P(\vec{k}, k_4). These quantities are renormalization-group invariants, in the sense that they are independent of the renormalization scheme. A scheme-independent definition of the running coupling constant is provided by k2V(k)=x0g2(k/Λcoul)\vec{k}^2 V(\vec{k}) = x_0 g^2(\vec{k}/\Lambda_{coul}), and of αsg2(k/Λcoul)4π\alpha_s \equiv {{g^2(\vec{k} / \Lambda_{coul})} \over {4\pi}}, where x0=12N11N2Nfx_0 = {{12N} \over {11N - 2N_f}}, and Λcoul\Lambda_{coul} is a finite QCD mass scale. We also show how to calculate the coefficients in the expansion of the invariant β\beta-function β(g)kgk=(b0g3+b1g5+b2g7+...)\beta(g) \equiv |\vec{k}| {{\partial g} \over{\partial |\vec{k}|}} = -(b_0 g^3 + b_1 g^5 +b_2 g^7 + ...), where all coefficients are scheme-independent.Comment: 24 pages, 1 figure, TeX file. Minor modifications, incorporating referee's suggestion

    Infrared behavior of the gluon propagator in lattice Landau gauge: the three-dimensional case

    Full text link
    We evaluate numerically the three-momentum-space gluon propagator in the lattice Landau gauge, for three-dimensional pure-SU(2) lattice gauge theory with periodic boundary conditions. Simulations are done for nine different values of the coupling β\beta, from β=0\beta = 0 (strong coupling) to β=6.0\beta = 6.0 (in the scaling region), and for lattice sizes up to V=643V = 64^3. In the limit of large lattice volume we observe, in all cases, a gluon propagator decreasing for momenta smaller than a constant value pdecp_{dec}. From our data we estimate pdec350p_{dec} \approx 350 MeV. The result of a gluon propagator decreasing in the infrared limit has a straightforward interpretation as resulting from the proximity of the so-called first Gribov horizon in the infrared directions.Comment: 14 pages, BI-TP 99/03 preprint, correction in the Acknowledgments section. To appear in Phys.Rev.

    Gluon and ghost propagators in the Landau gauge: Deriving lattice results from Schwinger-Dyson equations

    Get PDF
    We show that the application of a novel gauge invariant truncation scheme to the Schwinger-Dyson equations of QCD leads, in the Landau gauge, to an infrared finite gluon propagator and a divergent ghost propagator, in qualitative agreement with recent lattice data.Comment: 9 pages, 2 figures; v3: typos corrected; v2: discussion on numerical results expanded, considerations about the Kugo-Ojima confinement criterion adde

    Infrared behavior and Gribov ambiguity in SU(2) lattice gauge theory

    Full text link
    For SU(2) lattice gauge theory we study numerically the infrared behavior of the Landau gauge ghost and gluon propagators with the special accent on the Gribov copy dependence. Applying a very efficient gauge fixing procedure and generating up to 80 gauge copies we find that the Gribov copy effect for both propagators is essential in the infrared. In particular, our best copy dressing function of the ghost propagator approaches a plateau in the infrared, while for the random first copy it still grows. Our best copy zero-momentum gluon propagator shows a tendency to decrease with growing lattice size which excludes singular solutions. Our results look compatible with the so-called decoupling solution with a non-singular gluon propagator. However, we do not yet consider the Gribov copy problem to be finally resolved.Comment: 9 pages, 9 figure

    Canonical Transformations and Renormalization Group Invariance in the presence of Non-trivial Backgrounds

    Full text link
    We show that for a SU(N) Yang-Mills theory the classical background-quantum splitting is non-trivially deformed at the quantum level by a canonical transformation with respect to the Batalin-Vilkovisky bracket associated with the Slavnov-Taylor identity of the theory. This canonical transformation acts on all the fields (including the ghosts) and antifields; it uniquely fixes the dependence on the background field of all the one-particle irreducible Green's functions of the theory at hand. The approach is valid both at the perturbative and non-perturbative level, being based solely on symmetry requirements. As a practical application, we derive the renormalization group equation in the presence of a generic background and apply it in the case of a SU(2) instanton. Finally, we explicitly calculate the one-loop deformation of the background-quantum splitting in lowest order in the instanton background.Comment: 24 pages, 1 figur

    The three-dimensional XY universality class: A high precision Monte Carlo estimate of the universal amplitude ratio A_+/A_-

    Full text link
    We simulate the improved three-dimensional two-component phi^4 model on the simple cubic lattice in the low and the high temperature phase for reduced temperatures down to |T-T_c|/T_c \approx 0.0017 on lattices of a size up to 350^3. Our new results for the internal energy and the specific heat are combined with the accurate estimates of beta_c and data for the internal energy and the specific heat at \beta_c recently obtained in cond-mat/0605083. We find R_{\alpha} = (1-A_+/A_-)/\alpha = 4.01(5), where alpha is the critical exponent of the specific heat and A_{\pm} is the amplitude of the specific heat in the high and the low temperature phase, respectively.Comment: 14 pages, 4 figure
    corecore