7 research outputs found

    Energy efficiency and integration of urban electrical transport systems: EVS and metro-trains of two real European lines

    Get PDF
    Transport is a main source of pollutants in cities, where air quality is a major concern. New transport technologies, such as electric vehicles, and public transport modalities, such as urban railways, have arisen as solutions to this important problem. One of the main difficulties for the adoption of electric vehicles by consumers is the scarcity of a suitable charging infrastructure. The use of the railway power supplies to charge electric vehicle batteries could facilitate the deployment of charging infrastructure in cities. It would reduce the cost because of the use of an existing installation. Furthermore, electric vehicles can use braking energy from trains that was previously wasted in rheostats. This paper presents the results of a collaboration between research teams from University of Rome Sapienza and Comillas Pontifical University. In this work, two real European cases are studied: an Italian metro line and a Spanish metro line. The energy performance of these metro lines and their capacity to charge electric vehicles have been studied by means of detailed simulation tools. Their results have shown that the use of regenerated energy is 98% for short interval of trains in both cases. However, the use of regenerated energy decreases as the train intervals grow. In a daily operation, an important amount of regenerated energy is wasted in the Italian and Spanish case. Using this energy, a significant number of electric vehicles could be charged every day

    A Two-Level Fuzzy Multi-Objective Design of ATO Driving Commands for Energy-Efficient Operation of Metropolitan Railway Lines

    No full text
    Policies for reducing CO2 and other GHG emissions have motivated an increase in electrification in metropolitan areas, mandating reductions in energy consumption. Metro systems are keystone contributors to the sustainability of cities; they can reduce the energy consumption of cities through the use of the economic driving parameters in their onboard automatic train operation systems (ATO) and through the strategic design of efficient timetables. This paper proposes a two-level optimization method to design efficient, comfortable, and robust driving commands to be programmed in all the interstations of a metro line. This method aims to increase the sustainability of metro operations by producing efficient timetables with economic driving for each interstation while considering comfort restrictions and train mass uncertainty. First, in the eco-driving level, an optimal Pareto front between every pair of successive stations is obtained using a multi-objective particle swarm optimization algorithm with fuzzy parameters (F-MOPSO). This front contains optimized speed profiles for different running times considering train mass variations. The global problem is stated as a multi-objective combinatorial problem, and a fuzzy greedy randomized adaptive search procedure (F-GRASP) is used to perform an intelligent search for the optimal timetables. Thus, a global front of interstation driving commands is computed for the whole line, showing the minimum energy consumption for different travel times. This method is analyzed in a case study with real data from a Spanish metro line. The results are compared with the minimum running time timetable and a typical timetable design procedure. The proposed algorithms achieve a 24% reduction in energy consumption in comparison to the fastest driving commands timetable, representing a 4% increase in energy savings over the uniform timetable design

    Eco-Driving in Railway Lines Considering the Uncertainty Associated with Climatological Conditions

    No full text
    Eco-driving is a keystone in energy reduction in railways and a fundamental tool to contribute to the Sustainable Development Goals in the transport sector. However, its results in real applications are subject to uncertainties such as climatological factors that are not considered in the train driving optimisation. This paper aims to develop an eco-driving model to design efficient driving commands considering the uncertainty of climatological conditions. This uncertainty in temperature, pressure, and wind is modelled by means of fuzzy numbers, and the optimisation problem is solved using a Genetic Algorithm with fuzzy parameters making use of an accurate railway simulator. It has been applied to a realistic Spanish high-speed railway scenario, proving the importance of considering the uncertainty of climatological parameters to adapt driving commands to them. The results obtained show that the energy savings expected without considering climatological factors account for 29.76%, but if they are considered, savings can rise up to 34.7% in summer conditions. With the proposed model, a variation in energy of 5.32% is obtained when summer and winter scenarios are compared while punctuality constraints are fulfiled. In conclusion, the model allows the operator to estimate better energy by obtaining optimised driving adapted to the climate
    corecore