75 research outputs found

    The Public Photometry Pipelines for Exoplanets

    Full text link
    Over the past decade, exoplanet atmospheric characterization has became what some might call the cosmology of astronomy. In an attempt to extract and understand the weak planetary signals (a few percent down to a few tens of ppm times that of their host-star signals), researchers have developed dozens of idealized planetary atmospheric models. Physical interpretations hinge on pretending that we understand stellar signals (as well behaved mostly temporarily static spherical cows), as well as planetary signals (as unidimensional objects, or sometimes quasi-multidimensional objects). The discovery of small and cool planets has lead to analyze planetary signals well below the designed photometric precision of current instrumentation. The challenge is up there, and keep us busy, so all is well. Here we present yet another open-source tool to analyze exoplanet data of time-series observations. The {\puppies} code is available via PyPI (\texttt{pip install exo-puppies}) and conda, the documentation is located at https://puppies.rtfd.ioComment: Submitted to The Aprilis Prima Journal, 5 pages, 5 figures, 1 dog (Sheltie

    The Role of N2 as a Geo-Biosignature for the Detection and Characterization of Earth-like Habitats

    Get PDF
    Since the Archean, N2 has been a major atmospheric constituent in Earth's atmosphere. Nitrogen is an essential element in the building blocks of life, therefore the geobiological nitrogen cycle is a fundamental factor in the long term evolution of both Earth and Earth-like exoplanets. We discuss the development of the Earth's N2 atmosphere since the planet's formation and its relation with the geobiological cycle. Then we suggest atmospheric evolution scenarios and their possible interaction with life forms: firstly, for a stagnant-lid anoxic world, secondly for a tectonically active anoxic world, and thirdly for an oxidized tectonically active world. Furthermore, we discuss a possible demise of present Earth's biosphere and its effects on the atmosphere. Since life forms are the most efficient means for recycling deposited nitrogen back into the atmosphere nowadays, they sustain its surface partial pressure at high levels. Also, the simultaneous presence of significant N2 and O2 is chemically incompatible in an atmosphere over geological timescales. Thus, we argue that an N2-dominated atmosphere in combination with O2 on Earth-like planets within circumstellar habitable zones can be considered as a geo-biosignature. Terrestrial planets with such atmospheres will have an operating tectonic regime connected with an aerobe biosphere, whereas other scenarios in most cases end up with a CO2-dominated atmosphere. We conclude with implications for the search for life on Earth-like exoplanets inside the habitable zones of M to K-stars

    Non-Local Thermodynamic Equilibrium Transmission Spectrum Modelling of HD209458b

    Full text link
    Context - Exoplanetary upper atmospheres are low density environments where radiative processes can compete with collisional ones and introduce non-local thermodynamic equilibrium (NLTE) effects into transmission spectra. Aims - We develop a NLTE radiative transfer framework capable of modelling exoplanetary transmission spectra over a wide range of planetary properties. Methods - We adapt the NLTE spectral synthesis code Cloudy to produce an atmospheric structure and atomic transmission spectrum in both NLTE and local thermodynamic equilibrium (LTE) for the hot Jupiter HD209458b, given a published T-P profile and assuming solar metallicity. Selected spectral features, including Hα\alpha, Na I D, He I λ\lambda10830, Fe I & II ultra-violet (UV) bands, and C, O and Si UV lines, are compared with literature observations and models where available. The strength of NLTE effects are measured for individual spectral lines to identify which features are most strongly affected. Results - The developed modelling framework computing NLTE synthetic spectra reproduces literature results for the He I λ\lambda10830 triplet, the Na I D lines, and the forest of Fe I lines in the optical. Individual spectral lines in the NLTE spectrum exhibit up to 40 % stronger absorption relative to the LTE spectrum.Comment: Accepted for publication in A&A, 15 pages, 13 figure

    The Hubble/STIS Near-ultraviolet Transmission Spectrum of HD 189733b

    Full text link
    The benchmark hot Jupiter HD 189733b has been a key target to lay out the foundations of comparative planetology for giant exoplanets. As such, HD 189733b has been extensively studied across the electromagnetic spectrum. Here, we report the observation and analysis of three transit light curves of HD 189733b obtained with {\Hubble}/STIS in the near ultraviolet, the last remaining unexplored spectral window to be probed with present-day instrumentation for this planet. The NUV is a unique window for atmospheric mass-loss studies owing to the strong resonance lines and large photospheric flux. Overall, from a low-resolution analysis (R=50R=50) we found that the planet's near-ultraviolet spectrum is well characterized by a relatively flat baseline, consistent with the optical-infrared transmission, plus two regions at \sim2350 and \sim2600 {\AA} that exhibit a broad and significant excess absorption above the continuum. From an analysis at a higher resolution (R=4700R=4700), we found that the transit depths at the core of the magnesium resonance lines are consistent with the surrounding continuum. We discarded the presence of \ion{Mg}{ii} absorption in the upper atmosphere at a \sim2--4σ\sigma confidence level, whereas we could place no significant constraint for \ion{Mg}{i} absorption. These broad absorption features coincide with the expected location of \ion{Fe}{ii} bands; however, solar-abundance hydrodynamic models of the upper atmosphere are not able to reproduce the amplitude of these features with iron absorption. Such scenario would require a combination of little to no iron condensation in the lower-atmosphere, super-solar metallicities, and a mechanism to enhance the absorption features (such as zonal wind broadening). The true nature of this feature remains to be confirmed.Comment: Accepted for publication at Astronomy and Astrophysic

    A comparison of simulated JWST observations derived from equilibrium and non-equilibrium chemistry models of giant exoplanets

    Get PDF
    SDB thanks NASA GSFC and UMBC for support of this work, and the University of Exeter for support through a Ph.D. studentship.We aim to see if the difference between equilibrium and disequilibrium chemistry is observable in the atmospheres of transiting planets by the James Webb Space Telescope (JWST). We perform a case study comparing the dayside emission spectra of three planets like HD 189733b, WASP-80b, and GJ436b, in and out of chemical equilibrium at two metallicities each. These three planets were chosen because they span a large range of planetary masses and equilibrium temperatures, from hot and Jupiter-sized to warm and Neptune-sized. We link the one-dimensional disequilibrium chemistry model from Venot et al. (2012) in which thermochemical kinetics, vertical transport, and photochemistry are taken into account, to the one-dimensional, pseudo line-by-line radiative transfer model, Pyrat Bay, developed especially for hot Jupiters, and then simulate JWST spectra using PandExo for comparing the effects of temperature, metallicity, and radius. We find the most significant differences from 4 to 5 μm due to disequilibrium from CO and CO2 abundances, and also H2O for select cases. Our case study shows a certain "sweet spot" of planetary mass, temperature, and metallicity where the difference between equilibrium and disequilibrium is observable. For a planet similar to WASP-80b, JWST's NIRSpec G395M can detect differences due to disequilibrium chemistry with one eclipse event. For a planet similar to GJ 436b, the observability of differences due to disequilibrium chemistry is possible at low metallicity given five eclipse events, but not possible at the higher metallicity.PostprintPeer reviewe

    Spitzer observations of the thermal emission from WASP-43b

    Get PDF
    WASP-43b is one of the closest-orbiting hot Jupiters, with a semimajor axis of a = 0.01526 +/- 0.00018 AU and a period of only 0.81 days. However, it orbits one of the coolest stars with a hot Jupiter (Tstar = 4520 +/- 120 K), giving the planet a modest equilibrium temperature of Teq = 1440 +/- 40 K, assuming zero Bond albedo and uniform planetary energy redistribution. The eclipse depths and brightness temperatures from our jointly fit model are 0.347% +/- 0.013% and 1670 +/- 23 K at 3.6 {\mu}m and 0.382% +/- 0.015% and 1514 +/- 25 K at 4.5 {\mu}m. The eclipse timings improved the estimate of the orbital period, P, by a factor of three (P = 0.81347436 +/- 1.4*10-7 days) and put an upper limit on the eccentricity (e = 0.010+0.010 -0.007). We use our Spitzer eclipse depths along with four previously reported ground-based photometric observations in the near-infrared to constrain the atmospheric properties of WASP-43b. The data rule out a strong thermal inversion in the dayside atmosphere of WASP-43b. Model atmospheres with no thermal inversions and fiducial oxygen-rich compositions are able to explain all the available data. However, a wide range of metallicities and C/O ratios can explain the data. The data suggest low day-night energy redistribution in the planet, consistent with previous studies, with a nominal upper limit of about 35% for the fraction of energy incident on the dayside that is redistributed to the nightside.Comment: 11 pages, 9 figure

    A retrieval challenge exercise for the Ariel mission

    Get PDF
    The Ariel mission, due to launch in 2029, will obtain spectroscopic information for 1000 exoplanets, providing an unprecedented opportunity for comparative exoplanetology. Retrieval codes - parameteric atmospheric models coupled with an inversion algorithm - represent the tool of choice for interpreting Ariel data. Ensuring that reliable and consistent results can be produced by these tools is a critical preparatory step for the mission. Here, we present the results of a retrieval challenge. We use five different exoplanet retrieval codes to analyse the same synthetic datasets, and test a) the ability of each to recover the correct input solution and b) the consistency of the results. We find that generally there is very good agreement between the five codes, and in the majority of cases the correct solutions are recovered. This demonstrates the reproducibility of retrievals for transit spectra of exoplanets, even when codes are not previously benchmarked against each other
    corecore