29 research outputs found

    Examination variability in short-wavelength automated perimetry

    Get PDF
    The study evaluated sources of within- and between-subject variability in standard white-on-white (W-W) perimetry and short-wavelength automated perimetry (SWAP). The Influence of staircase strategy on the fatigue effect in W-W perimetry was investigated for a 4 dB single step, single reversal strategy; a variable step size, single reversal dynamic strategy; and the standard 4-2 dB double reversal strategy. The fatigue effect increased as the duration of the examination Increased and was greatest in the second eye for all strategies. The fatigue effect was lowest for the 4dB strategy, which exhibited the shortest examination time and was greatest for the 4-2 dB strategy, which exhibited the longest examination time. Staircase efficiency was lowest for the 4 dB strategy and highest for the dynamic strategy which thus offers a reduced examination time and low inter-subject variability. The normal between-subject variability of SWAP was determined for the standard 4-2 dB double reversal strategy and the 3 dB single reversal FASTPAC strategy and compared to that of W-W perimetry, The decrease in sensitivity with Increase in age was greatest for SWAP. The between-subject variability of SWAP was greater than W-W perimetry. Correction for the Influence of ocular media absorption reduced the between-subject variability of SWAP, The FASTPAC strategy yielded the lowest between-subject variability In SWAP, but the greatest between-subject variability In WoW perimetry. The greater between-subject variability of SWAP has profound Implications for the delineation of visual field abnormality, The fatigue effect for the Full Threshold strategy in SWAP was evaluated with conventional opaque, and translucent occlusion of the fellow eye. SWAP exhibited a greater fatigue effect than W-W perimetry. Translucent occlusion reduced the between-subject variability of W-W perimetry but Increased the between-subject variability of SWAP. The elevation of sensitivity was greater with translucent occlusion which has implications for the statistical analysis of W-W perimetry and SWAP. The influence of age-related cataract extraction and IOL implantation upon the visual field derived by WoW perimetry and SWAP was determined. Cataract yielded a general reduction In sensitivity which was preferentially greater in SWAP, even after the correction of SWAP for the attenuation of the stimulus by the ocular media. There was no correlation between either backward or forward light scatter and the magnitude of the attenuation of W-W or SWAP sensitivity. The post-operative mean deviation in SWAP was positive and has ramifications for the statistical Interpretation of SWAP. Short-wavelength-sensitive pathway isolation was assessed as a function of stimulus eccentricity using the two-colour Increment threshold method. At least 15 dB of SWS pathway Isolation was achieved for 440 nm, 450 nm and 460 nm stimuli at a background luminance of 100 cdm-2, There was a slight decrease In SWS pathway Isolation for all stimulus wavelengths with increasing eccentricity which was not of clinical significance. Adopting a 450 nm stimulus may reduce between-subject variability In SWAP due to a reduction In ocular media absorption and macular pigment absorption

    The impact of flash intensity on retinal vessel oxygen saturation measurements using dual wavelength oximetry

    Get PDF
    PURPOSE. To establish the optimal flash settings for retinal vessel oxygen saturation parameters using dual-wavelength imaging in a multiethnic group. METHODS. Twelve healthy young subjects (mean age 32 years [SD 7]; three Mediterranean, two South Asian, and seven Caucasian individuals) underwent retinal vessel oxygen saturation measurements using dual-wavelength oximetry, noncontact tonometry, and manual sphygmomanometry. In order to evaluate the impact of flash intensity, we obtained three images (fundus camera angle 30°, ONH centered) per flash setting. Flash settings of the fundus camera were increased in steps of 2 (initial setting of 6 and the final of 22), which reflect logarithmic increasing intensities from 13.5 to 214 Watt seconds (Ws). RESULTS. Flash settings below 27 Ws were too low to obtain saturation measurements, whereas flash settings of more than 214 Ws resulted in overexposed images. Retinal arteriolar and venular oxygen saturation was comparable at flash settings of 27 to 76 Ws (arterioles' range: 85%-92%; venules' range: 45%-53%). Higher flash settings lead to increased saturation measurements in both retinal arterioles (up to 110%) and venules (up to 92%), with a more pronounced increase in venules. CONCLUSIONS. Flash intensity has a significant impact on retinal vessel oxygen saturation measurements using dual-wavelength retinal oximetry. High flash intensities lead to supranormal oxygen saturation measurements with a magnified effect in retinal venules compared with arteries. In addition to even retinal illumination, the correct flash setting is of paramount importance for clinical acquisition of images in retinal oximetry. We recommend flash settings between 27 to 76 Ws. © 2013 The Association for Research in Vision and Ophthalmology, Inc

    Retinal Vessel Oxygen Saturation Measurement Protocols and Their Agreement

    Get PDF
    Purpose: To assess agreement between different image sizes and analysis protocols for determination of retinal vessel oxygen saturation in the peripapillary retina of healthy individuals. Methods: Retinal oximetry measurements were acquired from 87 healthy volunteers using the IMEDOS Systems oxygen module. The peripapillary retinal vessels were assessed in a concentric annulus around the optic nerve head. Single and average vessel comparisons were made at different image field sizes of 30° and 50°. Comparisons between images obtained at 30° and 50° were made in a subset of 47 of the 87 individuals. Results: All subjects were normotensive and had normal intraocular pressures (9–16 mm Hg). Analyses of agreement between single vessel, averaged vessel, and between different size images were sought by Bland-Altman analyses, of which all yielded a low bias (<1% oxygen saturation). However, agreement between single vessels of consecutive images showed increased limits of agreement compared with saturation values calculated by averaging all or just the four major arcades of one image. Agreement between 30° and 50° images showed a similar bias as when comparing data obtained with the same camera angle setting but exhibited larger confidence intervals (arteries: bias = 0.21% [9.04/–8.62]%; veins: bias = 0.71% [14.82/–13.40]%). Conclusions: Averaging methods yielded the best agreement; there was little difference in average arterial and venous oxygen saturation between protocols, which analyze all vessels versus the four largest vessels. The least agreement was found for single vessel measurements and comparisons between different camera angles. Translational Relevance: Standardization of image capture protocols (same image size and undertaking a vessel averaging approach for oxygenation analysis) will enhance the detection of smaller physiological changes in eye disease

    The role of hemifield sector analysis in multifocal visual evoked potential objective perimetry in the early detection of glaucomatous visual field defects

    Get PDF
    Objective: The purpose of this study was to examine the effectiveness of a new analysis method of mfVEP objective perimetry in the early detection of glaucomatous visual field defects compared to the gold standard technique. Methods and patients: Three groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes), and glaucoma suspect patients (38 eyes). All subjects underwent two standard 24-2 visual field tests: one with the Humphrey Field Analyzer and a single mfVEP test in one session. Analysis of the mfVEP results was carried out using the new analysis protocol: the hemifield sector analysis protocol. Results: Analysis of the mfVEP showed that the signal to noise ratio (SNR) difference between superior and inferior hemifields was statistically significant between the three groups (analysis of variance, P<0.001 with a 95% confidence interval, 2.82, 2.89 for normal group; 2.25, 2.29 for glaucoma suspect group; 1.67, 1.73 for glaucoma group). The difference between superior and inferior hemifield sectors and hemi-rings was statistically significant in 11/11 pair of sectors and hemi-rings in the glaucoma patients group (t-test P<0.001), statistically significant in 5/11 pairs of sectors and hemi-rings in the glaucoma suspect group (t-test P<0.01), and only 1/11 pair was statistically significant (t-test P<0.9). The sensitivity and specificity of the hemifield sector analysis protocol in detecting glaucoma was 97% and 86% respectively and 89% and 79% in glaucoma suspects. These results showed that the new analysis protocol was able to confirm existing visual field defects detected by standard perimetry, was able to differentiate between the three study groups with a clear distinction between normal patients and those with suspected glaucoma, and was able to detect early visual field changes not detected by standard perimetry. In addition, the distinction between normal and glaucoma patients was especially clear and significant using this analysis. Conclusion: The new hemifield sector analysis protocol used in mfVEP testing can be used to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patients. Using this protocol, it can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. The sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucomatous visual field loss. The intersector analysis protocol can detect early field changes not detected by the standard Humphrey Field Analyzer test. © 2013 Mousa et al, publisher and licensee Dove Medical Press Ltd

    The benefit of combining standard automated perimetry and multifocal visual evoked potential hemifield intersector analysis in suspecious glaucomatous visual field defects

    Get PDF
    Several analysis protocols have been tested to identify early visual field losses in glaucoma patients using the mfVEP technique, some were successful in detection of field defects, which were comparable to the standard SAP visual field assessment, and others were not very informative and needed more adjustment and research work. In this study we implemented a novel analysis approach and evaluated its validity and whether it could be used effectively for early detection of visual field defects in glaucoma. The purpose of this study is to examine the benefit of adding mfVEP hemifield Intersector analysis protocol to the standard HFA test when there is suspicious glaucomatous visual field loss. 3 groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes) and glaucoma suspect patients (38 eyes). All subjects had a two standard Humphrey visual field HFA test 24-2, optical coherence tomography of the optic nerve head, and a single mfVEP test undertaken in one session. Analysis of the mfVEP results was done using the new analysis protocol; the Hemifield Sector Analysis HSA protocol. The retinal nerve fibre (RNFL) thickness was recorded to identify subjects with suspicious RNFL loss. The hemifield Intersector analysis of mfVEP results showed that signal to noise ratio (SNR) difference between superior and inferior hemifields was statistically significant between the 3 groups (ANOVA p<0.001 with a 95% CI). The difference between superior and inferior hemispheres in all subjects were all statistically significant in the glaucoma patient group 11/11 sectors (t-test p<0.001), partially significant 5/11 in glaucoma suspect group (t-test p<0.01) and no statistical difference between most sectors in normal group (only 1/11 was significant) (t-test p<0.9). Sensitivity and specificity of the HSA protocol in detecting glaucoma was 97% and 86% respectively, while for glaucoma suspect were 89% and 79%. The use of SAP and mfVEP results in subjects with suspicious glaucomatous visual field defects, identified by low RNFL thickness, is beneficial in confirming early visual field defects. The new HSA protocol used in the mfVEP testing can be used to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patient. Using this protocol in addition to SAP analysis can provide information about focal visual field differences across the horizontal midline, and confirm suspicious field defects. Sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucoma field loss. The Intersector analysis protocol can detect early field changes not detected by standard HFA test

    The effect of voluntary fasting and dehydration on flicker-induced retinal vascular dilation in a healthy individual: a case report

    Get PDF
    INTRODUCTION: Dynamic retinal vessel analysis represents a well-established method for the assessment of vascular reactivity during both normal conditions and after various provocations. We present a case where the subject showed abnormal retinal vessel reactivity after fasting voluntarily for 20 hours. CASE PRESENTATION: A healthy, 21-year-old man who fasted voluntarily for 20 hours exhibited abnormal retinal vascular reactivity (dilation and constriction) after flicker provocation as measured using the Dynamic Retinal Vessel Analyser (Imedos, Jena, Germany). CONCLUSION: The abnormal vascular reactivity induced by fasting was significant; abnormal levels of important nutrients due to fasting and dehydration could play a role through altering the concentration of vasoactive substances such as nitric oxide. This hypothesis needs further investigation

    Continuous retinal vessel diameter m easurements: the future in retinal vessel assessment?

    Get PDF
    PURPOSE. To establish an alternative method, sequential and diameter response analysis (SDRA), to determine dynamic retinal vessel responses and their time course in serial stimulation compared with the established method of averaged diameter responses and standard static assessment. METHODS. SDRA focuses on individual time and diameter responses, taking into account the fluctuation in baseline diameter, providing improved insight into reaction patterns when compared with established methods as delivered by retinal vessel analyzer (RVA) software. SDRA patterns were developed with measurements from 78 healthy nonsmokers and subsequently validated in a group of 21 otherwise healthy smokers. Fundus photography and retinal vessel responses were assessed by RVA, intraocular pressure by contact tonometry, and blood pressure by sphygmomanometry. RESULTS. Compared with the RVA software method, SDRA demonstrated a marked difference in retinal vessel responses to flickering light (P 0.05). As a validation of that finding, SDRA showed a strong relation between baseline retinal vessel diameter and subsequent dilatory response in both healthy subjects and smokers (P 0.001). The RVA software was unable to detect this difference or to find a difference in retinal vessel arteriovenous ratio between smokers and nonsmokers (P 0.243). However, SDRA revealed that smokers’ vessels showed both an increased level of arterial baseline diameter fluctuation before flicker stimulation (P 0.005) and an increased stiffness of retinal arterioles (P 0.035) compared with those in nonsmokers. These differences were unrelated to intraocular pressure or systemic blood pressure. CONCLUSIONS. SDRA shows promise as a tool for the assessment of vessel physiology. Further studies are needed to explore its application in patients with vascular diseases

    Altered blood vessel responses in the eye and finger in coronary artery disease

    Get PDF
    Cardiac function, such as heart rate variability, is abnormal in coronary artery disease, but its relation with the function of ocular and nail-fold blood vessels is unknown. The hypothesis was that there is abnormal retinal and peripheral microvascular endothelial function compared with large blood vessel and cardiac function. Twenty-four patients with coronary artery disease (CAD) and 30 healthy, age- and sex-matched control subjects were enrolled in the study

    Dual wavelength retinal vessel oximetry – Influence of fundus pigmentation

    Get PDF
    Background: Clinical methods examining oxygenation parameters in humans have been used in many different care settings, but concerns have been raised regarding their clinical utility when assessing people with darker skin pigmentation. While saturation values can be crucial in emergency medicine, they are equally valuable in assessing disease mechanisms and monitoring change in disease progression. Retinal pigmentation varies across individuals and hence, can impact on retinal oxygen parameters. The objective of this study was to quantify and eliminate the impact of retinal pigmentation on retinal vessel oxygen saturation parameters measured in the superficial retinal arterioles and venules. Methods: 105 healthy individuals of varying skin colour, iris colour and heritage were included. Following a full eye exam to exclude any ocular abnormality, all participants underwent intraocular pressure, systemic blood pressure measurements and dilated dual wavelength retinal photography. Rotation matrices were employed to minimise the dependency of retinal pigmentation on arterial and venous oxygen saturation measurements determined in a concentric measurement annulus. Results: Retinal oxygen saturation in venules showed a linear correlation with retinal pigmentation (y = 0.34 × x + 38.598), whereas arterial saturation followed a polynomial pattern (y = 0.0089 × x2 + 0.7499 × x + 85.073). Both arterial and venous saturation values were corrected using local fundus pigmentation. Pre-correction retinal arterial and venous oxygen saturation were 89.0% (±13.1) and 43.7% (±11.5), respectively, and post- correction values were 94.8% (±8.7) for arteries and 56.3% (±7.0) veins. Conclusions: When assessing multi-ethnic cohorts, it is important to consider the impact of pigmentation on imaging parameters and to account for it prior to clinical interpretation

    In vivo measures of anterior scleral resistance in humans with rebound tonometry

    Get PDF
    Purpose: To measure regional variations in anterior scleral resistance (ASR) using a ballistic rebound tonometer (RBT) and examine whether the variations are significantly affected by ethnicity and refractive error (RE). Methods: ASR was measured using a RBT (iCare TA01) following calibration against the biomechanical properties of agarose biogels. Eight scleral regions (nasal, temporal, superior, inferior, inferior-nasal, inferior-temporal, superior-nasal and superior-temporal) were measured at locations 4mm from the limbus. Subjects were 130 young adults comprising three ethnic groups whose RE distributions [MSE (D) ± S.D.] incorporated individuals categorised as without-myopia (NM; MSE ≥ −0.50) and with-myopia (WM; MSE < −0.50); British-White (BW): 26 NM + 0.52 ± 1.15D; 22 WM −3.83 ± 2.89D]; British-South-Asian (BSA): [9 NM + 0.49 ± 1.06D; 11 WM −5.07 ± 3.76D; Hong-Kong-Chinese (HKC): [11 NM + 0.39 ± 0.66D; 49 WM −4.46 ± 2.70D]. Biometric data were compiled using cycloplegic open-field autorefraction and the Zeiss IOLMaster. Two- and three-way repeated measures analysis of variances (anovas) tested regional differences for RBT values across both refractive status and ethnicity whilst stepwise forward multiple linear regression was used as an exploratory test. Results: Significant regional variations in ASR were identified for the BW, BSA and HKC (p < 0.001) individuals; superior-temporal region showed the lowest levels of resistance whilst the inferior-nasal region the highest. Compared to the BW and BSA groups, the HKC subjects displayed a significant increase in mean resistance for each respective region (p < 0.001). With the exception of the inferior region, ethnicity was found to be the chief predictor for variation in the scleral RBT values for all other regions. Mean RE group differences were insignificant. Conclusions: The novel application of RBT to the anterior sclera confirm regional variation in ASR. Greater ASR amongst the HKC group than the BW and BSA individuals suggests that ethnic differences in anterior scleral biomechanics may exist
    corecore