159 research outputs found

    Reconstruction of ancient microbial genomes from the human gut

    Get PDF
    Loss of gut microbial diversity1–6 in industrial populations is associated with chronic diseases7, underscoring the importance of studying our ancestral gut microbiome. However, relatively little is known about the composition of pre-industrial gut microbiomes. Here we performed a large-scale de novo assembly of microbial genomes from palaeofaeces. From eight authenticated human palaeofaeces samples (1,000–2,000 years old) with well-preserved DNA from southwestern USA and Mexico, we reconstructed 498 medium- and high-quality microbial genomes. Among the 181 genomes with the strongest evidence of being ancient and of human gut origin, 39% represent previously undescribed species-level genome bins. Tip dating suggests an approximate diversification timeline for the key human symbiont Methanobrevibacter smithii. In comparison to 789 present-day human gut microbiome samples from eight countries, the palaeofaeces samples are more similar to non-industrialized than industrialized human gut microbiomes. Functional profiling of the palaeofaeces samples reveals a markedly lower abundance of antibiotic-resistance and mucin-degrading genes, as well as enrichment of mobile genetic elements relative to industrial gut microbiomes. This study facilitates the discovery and characterization of previously undescribed gut microorganisms from ancient microbiomes and the investigation of the evolutionary history of the human gut microbiota through genome reconstruction from palaeofaeces.Ethics Overview of samples Reference-based taxonomic composition De novo genome reconstruction Methanobrevibacter smithii tip dating Functional genomic analysis Discussion Online content Method

    Similar Genetic Mechanisms Underlie the Parallel Evolution of Floral Phenotypes

    Get PDF
    The repeated origin of similar phenotypes is invaluable for studying the underlying genetics of adaptive traits; molecular evidence, however, is lacking for most examples of such similarity. The floral morphology of neotropical Malpighiaceae is distinctive and highly conserved, especially with regard to symmetry, and is thought to result from specialization on oil-bee pollinators. We recently demonstrated that CYCLOIDEA2–like genes (CYC2A and CYC2B) are associated with the development of the stereotypical floral zygomorphy that is critical to this plant–pollinator mutualism. Here, we build on this developmental framework to characterize floral symmetry in three clades of Malpighiaceae that have independently lost their oil bee association and experienced parallel shifts in their floral morphology, especially in regard to symmetry. We show that in each case these species exhibit a loss of CYC2B function, and a strikingly similar shift in the expression of CYC2A that is coincident with their shift in floral symmetry. These results indicate that similar floral phenotypes in this large angiosperm clade have evolved via parallel genetic changes from an otherwise highly conserved developmental program

    TROP2 Expressed in the Trunk of the Ureteric Duct Regulates Branching Morphogenesis during Kidney Development

    Get PDF
    TROP2, a cell surface protein structurally related to EpCAM, is expressed in various carcinomas, though its function remains largely unknown. We examined the expression of TROP2 and EpCAM in fetal mouse tissues, and found distinct patterns in the ureteric bud of the fetal kidney, which forms a tree-like structure. The tip cells in the ureteric bud proliferate to form branches, whereas the trunk cells differentiate to form a polarized ductal structure. EpCAM was expressed throughout the ureteric bud, whereas TROP2 expression was strongest at the trunk but diminished towards the tips, indicating the distinct cell populations in the ureteric bud. The cells highly expressing TROP2 (TROP2high) were negative for Ki67, a proliferating cell marker, and TROP2 and collagen-I were co-localized to the basal membrane of the trunk cells. TROP2high cells isolated from the fetal kidney failed to attach and spread on collagen-coated plates. Using MDCK cells, a well-established model for studying the branching morphogenesis of the ureteric bud, TROP2 was shown to inhibit cell spreading and motility on collagen-coated plates, and also branching in collagen-gel cultures, which mimic the ureteric bud's microenvironment. These results together suggest that TROP2 modulates the interaction between the cells and matrix and regulates the formation of the ureteric duct by suppressing branching from the trunk during kidney development

    NF-κB/Rel-Mediated Regulation of the Neural Fate in Drosophila

    Get PDF
    Two distinct roles are described for Dorsal, Dif and Relish, the three NF-κB/Rel proteins of Drosophila, in the development of the peripheral nervous system. First, these factors regulate transcription of scute during the singling out of sensory organ precursors from clusters of cells expressing the proneural genes achaete and scute. This effect is possibly mediated through binding sites for NF-κB/Rel proteins in a regulatory module of the scute gene required for maintenance of scute expression in precursors as well as repression in cells surrounding precursors. Second, genetic evidence suggests that the receptor Toll-8, Relish, Dif and Dorsal, and the caspase Dredd pathway are active over the entire imaginal disc epithelium, but Toll-8 expression is excluded from sensory organ precursors. Relish promotes rapid turnover of transcripts of the target genes scute and asense through an indirect, post-transcriptional mechanism. We propose that this buffering of gene expression levels serves to keep the neuro-epithelium constantly poised for neurogenesis

    Detection of SARS-CoV-2 infection by saliva and nasopharyngeal sampling in frontline healthcare workers: An observational cohort study

    Get PDF
    Background The SARS-CoV-2 pandemic has caused an unprecedented strain on healthcare systems worldwide, including the United Kingdom National Health Service (NHS). We conducted an observational cohort study of SARS-CoV-2 infection in frontline healthcare workers (HCW) working in an acute NHS Trust during the first wave of the pandemic, to answer emerging questions surrounding SARS-CoV-2 infection, diagnosis, transmission and control. Methods Using self-collected weekly saliva and twice weekly combined oropharyngeal/nasopharyngeal (OP/NP) samples, in addition to self-assessed symptom profiles and isolation behaviours, we retrospectively compared SARS-CoV-2 detection by RT-qPCR of saliva and OP/NP samples. We report the association with contemporaneous symptoms and isolation behaviour. Results Over a 12-week period from 30th March 2020, 40∙0% (n = 34/85, 95% confidence interval 31∙3-51∙8%) HCW had evidence of SARS-CoV-2 infection by surveillance OP/NP swab and/or saliva sample. Symptoms were reported by 47∙1% (n = 40) and self-isolation by 25∙9% (n = 22) participants. Only 44.1% (n = 15/34) participants with SARS-CoV-2 infection reported any symptoms within 14 days of a positive result and only 29∙4% (n = 10/34) reported self-isolation periods. Overall agreement between paired saliva and OP/NP swabs was 93∙4% (n = 211/226 pairs) but rates of positive concordance were low. In paired samples with at least one positive result, 35∙0% (n = 7/20) were positive exclusively by OP/NP swab, 40∙0% (n = 8/20) exclusively by saliva and in only 25∙0% (n = 5/20) were the OP/NP and saliva result both positive. Conclusions HCW are a potential source of SARS-CoV-2 transmission in hospitals and symptom screening will identify the minority of infections. Without routine asymptomatic SARS-CoV-2 screening, it is likely that HCW with SARS-CoV-2 infection would continue to attend work. Saliva, in addition to OP/NP swab testing, facilitated ascertainment of symptomatic and asymptomatic SARS-CoV-2 infections. Combined saliva and OP/NP swab sampling would improve detection of SARS-CoV-2 for surveillance and is recommended for a high sensitivity strategy

    Transgene × Environment Interactions in Genetically Modified Wheat

    Get PDF
    BACKGROUND: The introduction of transgenes into plants may cause unintended phenotypic effects which could have an impact on the plant itself and the environment. Little is published in the scientific literature about the interrelation of environmental factors and possible unintended effects in genetically modified (GM) plants. METHODS AND FINDINGS: We studied transgenic bread wheat Triticum aestivum lines expressing the wheat Pm3b gene against the fungus powdery mildew Blumeria graminis f.sp. tritici. Four independent offspring pairs, each consisting of a GM line and its corresponding non-GM control line, were grown under different soil nutrient conditions and with and without fungicide treatment in the glasshouse. Furthermore, we performed a field experiment with a similar design to validate our glasshouse results. The transgene increased the resistance to powdery mildew in all environments. However, GM plants reacted sensitive to fungicide spraying in the glasshouse. Without fungicide treatment, in the glasshouse GM lines had increased vegetative biomass and seed number and a twofold yield compared with control lines. In the field these results were reversed. Fertilization generally increased GM/control differences in the glasshouse but not in the field. Two of four GM lines showed up to 56% yield reduction and a 40-fold increase of infection with ergot disease Claviceps purpurea compared with their control lines in the field experiment; one GM line was very similar to its control. CONCLUSIONS: Our results demonstrate that, depending on the insertion event, a particular transgene can have large effects on the entire phenotype of a plant and that these effects can sometimes be reversed when plants are moved from the glasshouse to the field. However, it remains unclear which mechanisms underlie these effects and how they may affect concepts in molecular plant breeding and plant evolutionary ecology

    A Sustained Dietary Change Increases Epigenetic Variation in Isogenic Mice

    Get PDF
    Epigenetic changes can be induced by adverse environmental exposures, such as nutritional imbalance, but little is known about the nature or extent of these changes. Here we have explored the epigenomic effects of a sustained nutritional change, excess dietary methyl donors, by assessing genomic CpG methylation patterns in isogenic mice exposed for one or six generations. We find stochastic variation in methylation levels at many loci; exposure to methyl donors increases the magnitude of this variation and the number of variable loci. Several gene ontology categories are significantly overrepresented in genes proximal to these methylation-variable loci, suggesting that certain pathways are susceptible to environmental influence on their epigenetic states. Long-term exposure to the diet (six generations) results in a larger number of loci exhibiting epigenetic variability, suggesting that some of the induced changes are heritable. This finding presents the possibility that epigenetic variation within populations can be induced by environmental change, providing a vehicle for disease predisposition and possibly a substrate for natural selection
    • …
    corecore