21 research outputs found

    Plasmonic nanoresonator distributions for uniform energy deposition in active targets

    Get PDF
    Active targets implanted with core-shell-composition (CS) and nanorod-shaped (NR) plasmonic nanoresonators and doped with dyes were designed to ensure uniform energy deposition during illumination by two-counter propagating short laser pulses. The near-field enhancement, optical responses, and cross-sections were mapped above the concentration-Epump parameter-plane to inspect two different regions (I and II) with the potential to improve light-matter interaction phenomena. The distribution of steady-state absorption, as well as of the power-loss and power-loss density integrated until the complete overlap of the two short pulses was determined. The uniform distribution was adjusted to constrain standard deviations of the integrated power-loss distributions in the order of ∼10%. Dye doping of target-I/II implanted with uniform CS (NR) nanoresonator distributions results in larger absorption with increased standard deviation, larger power-loss, and power-loss density with decreased (decreased / increased) standard deviation. The adjustment allows larger absorption in CS-II and larger power-loss and power-loss density in CS-implanted targets, smaller standard deviation in targets-I for absorption, and in all targets for power-loss and its density. Larger dye concentration makes it possible to achieve larger absorption (except in adjusted NR-II), larger power-loss and power-loss density in all CS and in adjusted NR distributions, with decreased standard deviation in CS-implanted targets for all quantities and in NR-implanted targets for absorption. CS implantation results in larger absorption with a larger standard deviation, moreover allows larger power-loss in adjusted distributions and smaller standard deviation in power-loss quantities for larger concentration in both distributions and the same standard deviation for smaller concentration in adjusted distribution. Based on these results, adjusted CS distributions in targets doped with a dye of higher concentration are proposed.publishedVersio

    Quarkyonic matter from hydro and rapid freeze out

    Get PDF
    Quarkyonic matter is a predicted phase between deconfined ideal QGP and Hadronic matter where the dominant degrees of freedom are quarks. Collective flow measurements indicate that the flow developed in QGP, as flow measurements scale with the constituent quark numbers. The possible reasons for the observed constituent quark number scaling were analyzed, arriving to the conclusion that collective flow must have frozen out early when quarks were the dominant constituents of matter.publishedVersio

    Laser Wake Field Collider

    Get PDF
    Recently NAno-Plasmonic, Laser Inertial Fusion Experiments (NAPLIFE) were proposed, as an improved way to achieve laser driven fusion. The improvement is the combination of two basic research discoveries: (i) the possibility of detonations on space-time hyper-surfaces with time-like normal (i.e. simultaneous detonation in a whole volume) and (ii) to increase this volume to the whole target, by regulating the laser light absorption using nanoshells or nanorods as antennas. These principles can be realized in a one dimensional configuration, in the simplest way with two opposing laser beams as in particle colliders. Such, opposing laser beam experiments were also performed recently. Here we study the consequences of the Laser Wake Field Acceleration (LWFA) if we experience it in a colliding laser beam set-up. These studies can be applied to laser driven fusion, but also to other rapid phase transition, combustion, or ignition studies in other materials.publishedVersio
    corecore