15 research outputs found

    Evidence from Identified Particles for Active Quark and Gluon Degrees of Freedom

    Get PDF
    Measurements of intermediate pT (1.5 < pT < 5.0 GeV/c) identified particle distributions in heavy ion collisions at SPS and RHIC energies display striking dependencies on the number of constituent quarks in the corresponding hadron. One finds that elliptic flow at intermediate pT follows a constituent quark scaling law as predicted by models of hadron formation through coalescence. In addition, baryon production is also found to increase with event multiplicity much faster than meson production. The rate of increase is similar for all baryons, and seemingly independent of mass. This indicates that the number of constituent quarks determines the multiplicity dependence of identified hadron production at intermediate pT. We review these measurements and interpret the experimental findings.Comment: 8 pages, 5 figures, proceedings for SQM2006 conference in Los Angele

    Centrality dependence of charged hadron production in deuteron+gold and nucleon+gold collisions at sqrt(s_NN)=200 GeV

    Full text link
    We present transverse momentum (p_T) spectra of charged hadrons measured in deuteron-gold and nucleon-gold collisions at \sqrts = 200 GeV for four centrality classes. Nucleon-gold collisions were selected by tagging events in which a spectator nucleon was observed in one of two forward rapidity detectors. The spectra and yields were investigated as a function of the number of binary nucleon-nucleon collisions, \nu, suffered by deuteron nucleons. A comparison of charged particle yields to those in p+p collisions show that the yield per nucleon-nucleon collision saturates with \nu for high momentum particles. We also present the charged hadron to neutral pion ratios as a function of p_T.Comment: 330 authors, 15 pages text, 16 figures, 3 tables. Submitted to Phys. Rev. Lett. v2 has minor changes to reflect revisions during review process. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    High-pT pi^zero Production with Respect to the Reaction Plane in Au + Au Collisions at sqrt(s_NN) = 200 GeV

    Full text link
    Measurements of the azimuthal anisotropy of high-\pT neutral pion neutral pion production in Au+Au collisions at sqrt(s_NN) = 200 GeV by the PHENIX experiment are presented. The data included in this paper were collected during the 2004 RHIC running period and represent approximately an order of magnitude increase in the number of analyzed events relative to previously published results. Azimuthal angle distributions of pi^0s detected in the PHENIX electromagnetic calorimeters are measured relative to the reaction plane determined event-by-event using the forward and backward beam-beam counters. Amplitudes of the second Fourier component (v_2) of the angular distributions are presented as a function of pi^0 transverse momentum p_T for different bins in collision centrality. Measured reaction plane dependent pi^0 yields are used to determine the azimuthal dependence of the pi^0 suppression as a function of p_T, R_AA (Delta phi,p_T). A jet-quenching motivated geometric analysis is presented that attempts to simultaneously describe the centrality dependence and reaction plane angle dependence of the pi^0 suppression in terms of the path lengths of hypothetical parent partons in the medium. This set of results allows for a detailed examination of the influence of geometry in the collision region, and of the interplay between collective flow and jet-quenching effects along the azimuthal axis.Comment: 344 authors, 35 pages text, RevTeX-4, 24 figures, 8 tables. Submitted to Physical Review

    Cold Nuclear Matter Effects on J/Psi as Constrained by Deuteron-Gold Measurements at sqrt(s_NN) = 200 GeV

    Full text link
    We present a new analysis of J/psi production yields in deuteron-gold collisions at sqrt(s_NN) = 200 GeV using data taken by the PHENIX experiment in 2003 and previously published in [S.S. Adler et al., Phys. Rev. Lett 96, 012304 (2006)]. The high statistics proton-proton J/psi data taken in 2005 is used to improve the baseline measurement and thus construct updated cold nuclear matter modification factors R_dAu. A suppression of J/psi in cold nuclear matter is observed as one goes forward in rapidity (in the deuteron-going direction), corresponding to a region more sensitive to initial state low-x gluons in the gold nucleus. The measured nuclear modification factors are compared to theoretical calculations of nuclear shadowing to which a J/psi (or precursor) break-up cross-section is added. Breakup cross sections of sigma_breakup = 2.8^[+1.7_-1.4] (2.2^[+1.6_-1.5]) mb are obtained by fitting these calculations to the data using two different models of nuclear shadowing. These breakup cross section values are consistent within large uncertainties with the 4.2 +/- 0.5 mb determined at lower collision energies. Projecting this range of cold nuclear matter effects to copper-copper and gold-gold collisions reveals that the current constraints are not sufficient to firmly quantify the additional hot nuclear matter effect.Comment: 453 authors from 59 institutions, 15 pages, 13 figures, 5 tables. Submitted to Physical Review C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Systematic Studies of Elliptic Flow Measurements in Au+Au Collisions at sqrt(s_NN) = 200 GeV

    Full text link
    We present inclusive charged hadron elliptic flow v_2 measured over the pseudorapidity range |\eta| < 0.35 in Au+Au collisions at sqrt(s_NN) = 200 GeV. Results for v_2 are presented over a broad range of transverse momentum (p_T = 0.2-8.0 GeV/c) and centrality (0-60%). In order to study non-flow effects that are not correlated with the reaction plane, as well as the fluctuations of v_2, we compare two different analysis methods: (1) event plane method from two independent sub-detectors at forward (|\eta| = 3.1-3.9) and beam (|\eta| > 6.5) pseudorapidities and (2) two-particle cumulant method extracted using correlations between particles detected at midrapidity. The two event-plane results are consistent within systematic uncertainties over the measured p_T and in centrality 0-40%. There is at most 20% difference of the v_2 between the two event plane methods in peripheral (40-60%) collisions. The comparisons between the two-particle cumulant results and the standard event plane measurements are discussed.Comment: 347 authors, 27 pages text, RevTeX-4, 24 figures, 10 tables. Submitted to Physical Review

    Nuclear effects on hadron production in d plus Au collisions at root S-NN=200 GeV revealed by comparison with p plus p data

    Get PDF
    PHENIX has measured the centrality dependence of midrapidity pion, kaon, and proton transverse momentum distributions in d+Au and p+p collisions at root s(NN) = 200 GeV. The p+p data provide a reference for nuclear effects in d+Au and previously measured Au+Au collisions. Hadron production is enhanced in d+Au, relative to independent nucleon-nucleon scattering, as was observed in lower energy collisions. The nuclear modification factor for (anti)protons is larger than that for pions. The difference increases with centrality but is not sufficient to account for the abundance of baryon production observed in central Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC). The centrality dependence in d+Au shows that the nuclear modification factor increases gradually with the number of collisions encountered by each participant nucleon. We also present comparisons with lower energy data as well as with parton recombination and other theoretical models of nuclear effects on particle production

    Production of ω\omega mesons at Large Transverse Momenta in p+p and d+Au Collisions at sNN\sqrt{s_{NN}} = 200 GeV

    No full text
    330 authors, 6 pages text, 4 figures, 1 table. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.html - EIThe PHENIX experiment at RHIC has measured the invariant cross section for omega-meson production at mid-rapidity in the transverse momentum range 2.5 pi^0 pi^+ pi^- and omega --> pi^0 gamma) yield consistent results, and the reconstructed omega mass agrees with the accepted value within the p_T range of the measurements. The omega/pi^0 ratio is found to be 0.85 +/- 0.05(stat) +/- 0.09(sys) and 0.94 +/- 0.08(stat) +/- 0.12(sys) in p+p and d+Au collisions respectively, independent of p_T . The nuclear modification factor R_dA is 1.03 +/- 0.12(stat) +/- 0.21(sys) and 0.83 +/- 0.21(stat) +/- 0.17(sys) in minimum bias and central (0-20%) d+Au collisions, respectively

    Detailed measurement of the e(+)e(-) pair continuum in p plus p and Au plus Au collisions at root s(NN)=200 GeV and implications for direct photon production

    No full text
    PHENIX has measured the e(+)e(-) pair continuum in root s(NN) = 200 GeV Au+Au and p+p collisions over a wide range of mass and transverse momenta. The e(+)e(-) yield is compared to the expectations from hadronic sources, based on PHENIX measurements. In the intermediate-mass region, between the masses of the phi and the J/psi meson, the yield is consistent with expectations from correlated c (c) over bar production, although other mechanisms are not ruled out. In the low-mass region, below the phi, the p+p inclusive mass spectrum is well described by known contributions from light meson decays. In contrast, the Au+Au minimum bias inclusive mass spectrum in this region shows an enhancement by a factor of 4.7 +/- 0.4(stat) +/- 1.5(syst) +/- 0.9(model). At low mass (m(ee) < 0.3 GeV/c(2)) and high p(T) (1 < p(T) < 5 GeV/c) an enhanced e(+)e(-) pair yield is observed that is consistent with production of virtual direct photons. This excess is used to infer the yield of real direct photons. In central Au+Au collisions, the excess of the direct photon yield over the p+p is exponential in p(T), with inverse slope T = 221 +/- 19(stat) +/- 19(syst) MeV. Hydrodynamical models with initial temperatures ranging from T(init) similar or equal to 300-600 MeV at times of 0.6-0.15 fm/c after the collision are in qualitative agreement with the direct photon data in Au+Au. For low p(T) < 1 GeV/c the low-mass region shows a further significant enhancement that increases with centrality and has an inverse slope of T similar or equal to 100 MeV. Theoretical models underpredict the low-mass, low-p(T) enhancement.Office of Nuclear Physics in the Office of Science of the Department of Energy (DOE)National Science Foundation (NSF)Abilene Christian University Research CouncilResearch Foundation of SUNYDean of the College of Arts and Sciences, Vanderbilt University (USA)Ministry of Education, Culture, Sports, Science, and Technology (MEXT), JapanJSPS - Japan Society for the Promotion of Science (Japan)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) (Brazil)NSFC Natural Science Foundation of ChinaMSMT Ministry of Education, Youth and Sports (Czech Republic)Centre National de la Recherche Scientifique - CNRS(CNRS/IN2P3) Commissariat a l'Energie Atomique, and Institut National de Physique Nucleaire et de Physique des Particules (France)BMBF - Ministry of Industry, Science and Tekhnologies, Bundesministerium fur Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany)Hungarian National Science Fund, OTKA (Hungary)(DAE) Department of Atomic Energy, IndiaISF - Israel Science Foundation (Israel)National Research Foundation (NRF), KoreaMES Ministry of Education and Science, Russia Academy of Sciences, Federal Agency of Atomic Energy (Russia)VR and the Wallenberg Foundation (Sweden)CRDF US Civilian Research and Development Foundation for the Independent States of the Former Soviet UnionUS-Hungarian NSF-OTKA-MTA(BSF) U.S.-Israel Binational Science Foundatio
    corecore