152 research outputs found
On spectral analysis in varieties containing the solutions of inhomogeneous linear functional equations
The aim of the paper is to investigate the solutions of special inhomogeneous
linear functional equations by using spectral analysis in a translation
invariant closed linear subspace of additive/multiadditive functions containing
the restrictions of the solutions to finitely generated fields. The application
of spectral analysis in some related varieties is a new and important trend in
the theory of functional equations; especially they have successful
applications in case of homogeneous linear functional equations. The foundation
of the theory can be found in M. Laczkovich and G. Kiss \cite{KL}, see also G.
Kiss and A. Varga \cite{KV}. We are going to adopt the main theoretical tools
to solve some inhomogeneous problems due to T. Szostok \cite{KKSZ08}, see also
\cite{KKSZ} and \cite{KKSZW}. They are motivated by quadrature rules of
approximate integration
On spectral synthesis in varieties containing the solutions of inhomogeneous linear functional equations
As a continuation of our previous work \cite{KV2} the aim of the recent paper
is to investigate the solutions of special inhomogeneous linear functional
equations by using spectral synthesis in translation invariant closed linear
subspaces of additive/multiadditive functions containing the restrictions of
the solutions to finitely generated fields. The idea is based on the
fundamental work of M. Laczkovich and G. Kiss \cite{KL}. Using spectral
analysis in some related varieties we can prove the existence of special
solutions (automorphisms) of the functional equation but the spectral synthesis
allows us to describe the entire space of solutions on a large class of
finitely generated fields. It is spanned by the so-called exponential monomials
which can be given in terms of automorphisms of \cc and differential
operators. We apply the general theory to some inhomogeneous problems motivated
by quadrature rules of approximate integration \cite{KKSZ08}, see also
\cite{KKSZ} and \cite{KKSZW}
Konform geometria Riemann-Finsler tĂpusĂş metrikus tereken = Conform geometry of spaces with Riemann-Finsler metrics
TĂ©mánk az Ăşn. Finsler-terek konform geometriája, kĂĽlönös tekintettel speciális tĂ©rtĂpusok konform ekvivalenciájára. Egy sokaság Finsler-tĂ©r, ha az Ă©rintĹ‘vektorok hosszát egy nem feltĂ©tlenĂĽl belsĹ‘ szorzatbĂłl származĂł funkcionálsereg segĂtsĂ©gĂ©vel mĂ©rni tudjuk. Finsler-terek konform ekvivalenciája azt jelenti, hogy a funkcionálok pontonkĂ©nt/Ă©rintĹ‘terenkĂ©nt egymás skalárszorosai. A legismertebb tĂpus a Berwald-terekĂ©. Egy Wagner-tĂ©r pedig mindig konform ekvivalens egy Berwald-tĂ©rrel. FĹ‘ cĂ©lunk a Wagner-terek belsĹ‘ geometriai jellemzĂ©sĂ©nek a megoldása volt a Matsumoto-fĂ©le vannak-e nem triviálisan konform ekvivalens Berwald-terek problĂ©mával egyĂĽtt. EredmĂ©nyeink szerint kĂ©t Berwald-tĂ©r konform ekvivalenciája mindig triviális hacsak nem Riemann-terekrĹ‘l van szĂł. Ez azt jelenti, hogy a Wagner-tereket jellemzĹ‘ konform kapcsolat lĂ©nyegĂ©ben egyĂ©rtelműen meghatározott. VĂ©gĂĽl sikerĂĽlt a belsĹ‘ geometriai jellemzĂ©s problĂ©máját is megoldani egy a konform faktorra felĂrt parciális differenciálegyenletrendszer segĂtsĂ©gĂ©vel. Az általános elmĂ©letet az Ăşn. Randers-terek esetĂ©ben alkalmaztuk. Itt egy pontonkĂ©nt lineáris taggal deformált Riemann-fĂ©le metrikus tenzorral mĂ©rĂĽnk. LeĂrtuk azoknak a Riemann-tereknek a lokális struktĂşráját, melyek megengedik a metrikus tenzor lineáris deformáciĂłját Ăşgy, hogy Wagner-teret kapjunk. Ilyen pĂ©ldául a konstans negatĂv görbĂĽletű (hiperbolikus) tĂ©r. Ezek Wagner-tĂ©rrĂ© deformált osztályát nevezi SzabĂł Zoltán Bolyai-Lobacsevszkij-Finsler-fĂ©le tĂ©rnek. | The topic is the conformal geometry of Finsler spaces and the conformal equivalence of spaces of special types. Finsler spaces are manifolds equipped with a smooth collection of functionals measuring the length of tangent vectors. The conformal equivalence means that the members of two collections of functionals are homothetic to each other on each tangent space. The class of Berwald spaces is relatively well-known. The Wagner spaces are conformal to Berwald spaces. The aim is an intrinsic characterization via the canonical date of Finsler spaces instead of the extrinsic conformal relation. This is closely related to the problem due to M. Matsumoto: are there conformally equivalent Berwald spaces? Our main result states that the conformal equivalence between two Berwald spaces are always trivial unless they are Riemannian. Consequently the conformal relation of a Finsler space to a Berwald space is essentially unique. The general solution of the intrinsic characterization of Wagner spaces via a system of partial differential equations for the scale function give nice results in case of Randers spaces. The length of tangent vectors is measured by a Riemannian metric perturbed with a 1- form. Our (local) structure theorem characterizes Riemannian spaces admitting a 1-form such that the perturbation results in a Wagner manifold. An important example is the hyperbolic space. In this case the joined Wagner space is called a Bolyai-Lobacsevszkij-Finsler space by Z. SzabĂł
- …