945 research outputs found
Kulcsfontosságú gének genomikai előrejelzése: In Silico megközelítés = Genomic prediction of essential genes: in silico approach
Kulcsfontosságú gének bioinformatikai elemzése: Csoportunk számos számos olyan sajátságot ismertek fel, melyek segítségével jellemezni lehet az esszenciális vagy a géndózis változására érzékeny géneket. Ezek közül a génduplikációt, az alternatív anyagcsereútvonalak jelenlétét, a génkifejeződés mértékét és a gén genomon belüli pozícióját érdemes megemlíteni. Rendszerbiológiai modellek alapján kulcsfontosságú metabolikus gének előrejelzése: Előzetesen leírt módszerekre alapozva, részletes vizsgálatnak vetettük alá a sörélesztő rekonstruált metabolikus hálózatát, majd megvizsgáltuk, hogyan viselkedik a rendszer ha egy-egy enzim működésképtelen. Módszerünk sikeresen jelzi előre az esszenciális gének 85%-át. Ez a siker lehetővé tette, hogy a biológia olyan kulcskérdéseire keressünk választ, mint a mutációkkal szembeni robusztusság háttere, a biológiai hálózatok evolúciós változása vagy a minimál genomok természete. Genetikai interakciók rendszerbiológiai és kísérleti vizsgálata: Anyagcserehálózat rendszerbiológiai modellünk komoly lehetőséget biztosít a genetikai interakciók mélyebb megértéséhez. A modell sikeresen képes előrejelezni speciális genetikai interakciók jelenlétét. Számos érvünk szól amelett, hogy a mutációkkal szembeni robusztusság a különböző környezeti feltételekhez való alkalmazkodás mellékterméke. | Bioinformatics analyses of essential genes: We identified several cellular and genomic features that enable reliable characterization of essential and dosage sensitive genes: Gene duplication, alternative metabolic pathways, gene expression level and genomic position all have some effect on gene dispensability. In silico prediction of essential metabolic genes using systems biological models: We have employed and further developed a previously elaborated metabolic network model of yeast. Our method predicts gene essentiality with about 85% accuracy. These methods have enabled us to study several key issues in evolutionary biology, such as the nature of mutational robustness and minimal genomes or the driving forces in the evolution of metabolic networks. Computational and experimental analyses of genetic interactions: The computational model described above paves the way for gaining novel insights into the nature of genetic interactions. The current model is able to predict the presence of genetic interactions in the metabolic networks of yeast with nearly 50% accuracy, while only approximately 0.5% would be expected by chance. Along with other arguments, our findings suggest that apparent robustness against harmful mutations is not a directly selected trait, but it's rather a by-product of organismal adaptation to varying environments
Integration of Horizontally Transferred Genes into Regulatory Interaction Networks Takes Many Million Years
Adaptation of bacteria to new or changing environments is often associated with the uptake of foreign genes through horizontal gene transfer. However, it has remained unclear how (and how fast) new genes are integrated into their host's cellular networks. Combining the regulatory and protein interaction networks of Escherichia coli with comparative genomics tools, we provide the first systematic analysis of this issue. Genes transferred recently have fewer interaction partners compared to nontransferred genes in both regulatory and protein interaction networks. Thus, horizontally transferred genes involved in complex regulatory and protein-protein interactions are rarely favored by selection. Only few protein-protein interactions are gained after the initial integration of genes following the transfer event. In contrast, transferred genes are gradually integrated into the regulatory network of their host over evolutionary time. During adaptation to the host cellular environment, horizontally transferred genes recruit existing transcription factors of the host, reflected in the fast evolutionary rates of the cis-regulatory regions of transferred genes. Further, genes resulting from increasingly ancient transfer events show increasing numbers of transcriptional regulators as well as improved coregulation with interacting proteins. Fine-tuned integration of horizontally transferred genes into the regulatory network spans more than 8-22 million years and encompasses accelerated evolution of regulatory regions, stabilization of protein-protein interactions, and changes in codon usage
Polynomial Schur's theorem
We resolve the Ramsey problem for for all polynomials
over .Comment: 21 page
A vállalkozások hatékonysági tartalékai a menedzsment területén = Efficiency reserves of enterprises in management
A tanulmány arra a kérdésre keres választ, hogy van-e lehetőség a versenyképesség fokozatos javítására. Milyen tartalékokat lehet feltárni a Globális versenyképességi jelentés tapasztalatainak ismeretében, amelyek elősegíthetik a hatékonyság javulásán keresztül az erősebb versenypozíció visszaállítását
TESS in the Solar System
The Transiting Exoplanet Survey Satellite (TESS), launched successfully on 2018 April 18 will observe nearly the full sky, and will provide timeseries imaging data in ∼27-day-long campaigns. TESS is equipped with four cameras, each of which has a field of view of 24 × 24°. During the first two years of the primary mission, one of these cameras, Camera #1, is going to observe fields centered at an ecliptic latitude of 18°. While the ecliptic plane itself is not covered during the primary mission, the characteristic scale height of the main asteroid belt and Kuiper Belt implies that a significant amount of small solar system bodies will cross this camera’s field of view. Based on the comparison of the expected amount of information of TESS and Kepler/K2, we can compute the cumulative étendues of the two optical setups. This comparison results in roughly comparable optical étendues however, the net étendue is significantly larger in the case of TESS because all of the imaging data provided by the 30-minute cadence frames are downlinked rather than the pre-selected stamps of Kepler/K2. In addition, many principles of the data acquisition and optical setup are clearly different, including the level of confusing background sources; full- frame integration and cadence; the field-of-view centroid with respect to the apparent position of the Sun; as well as the differences in the duration of the campaigns. As one would expect, TESS will yield timeseries photometry, and hence rotational properties for only brighter objects, but in terms of spatial and phase space coverage, this sample will be more homogeneous and more complete. Here, we review the main analogs and differences between the Kepler/K2 mission and the TESS mission, focusing on scientific implications and possible yields related to our solar system
- …